AD-A174 825  EFFECTS OF ASSUMING ITNDEPENDENT COMPONENT FRILURE TIMES 4/2
IF THEY ARE ACTUR (U) OHIO STATE UNIV RESEARCH
FOUNDATION COLUMBUS M L MOESCHBERGER ET AL 26 NOV 85
UNCLASSIFIED AFOSR-TR-856-20842 AFOSR-82-83087 /6

-
»
~

-




g L0

———
S———
S———
———
S ————

o S5

"TPFEEE [

FEEL
FE

rr
[ 3
re
==
N
o

—
=

MIM' 2l pe |

YCROCOPY RESOLUTION TEST CHART
NATIONA] BUREAU OF STANDARDS 1963.4
MR/

~—

3:.'::".;5;. ';':.. RO '-.' et .;5
]

} 9

A0 st . k

!'&4':'5:, :'. !”‘!" e ; n§»‘£‘ !-
NI .6'.?0.0..0‘.)' L) ' el

Ny




AD-A174 825

JTIC FILE COPY

IR0 TP,
;‘_f.’l‘ “.'v.‘l.bq“y l'o',f ()

)
’

)
Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Mhan Deta Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
- - 9
4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOO COVERED

Effects of Assuming Independent Component Failure |Annual Report
Times, If They Are Actually Dependent, in a Series 1073 84 to 10/31/85

Bolling AFB, Washington, D.C. 20332

System 6. PERFORMING OG. REPORT NUMBER
i
7. AUTHOR(s) c.LcouancT OR GRANT NUMBER(s)
Melvin L. Moeschberger and John P. Klein Grant No.
AFOSR 82-0307

S. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGAAM ELEMENT, PROJECT, TASK |
The Ohio State University Research Foundation AREA & WORK UNIT NUMBERS

1314 Kinnear Roar 92 ©OWOIF 3304 AD
Columbus, Ohic .3212 ‘
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFOSK-NH November 26, 1985

Building 410 13. NUMBER OF PAGES

T3, MONITORING AGENCY NAME & ADORESS(I{ different from Controlling Olfice) [ 13. SECURITY CLASS. (ol thia report)
AFOSR-PRZ

Building 410 Unclassified
Bolling AFB "l&"xﬁ'ﬁé&?tl:fCAﬂf—/ou DOWNGRADING
Washington, D.C., 20332 ﬂm

16. DISTRIGUTION STATEMENT (of thie Report) : )
Approved for public release; distribution unlimited ﬁ,,ﬁ oy e

[

" DECS 1996

E

¢

17. DISTRISUTION STATEMENT (of the sbetract entered In Block 20, If different (rom Repert) A

A

10. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue en reverse side I necessary and identify by bdlock number)
modeling series systems, system reliability, competing risks, bivariate

exponential distributions, test for independence, consistency of the product
limit estimator, dependent risks, estimation of component life

20. ABSTRACT (Continue on reverse side if necessary snd identily by bdlock number)

The overall objective of this proposal is to investigate the robustness to
departures from independence of methods currently in use in reliability studies
when competing failure modes or competing causes of failure associated with a
single mode are present in a series system. The first specific aim is to
examine the error one makes in modeling a series system by a model which assumes
statistically independent component lifetimes when in fact the component life-
times follow some multivariate distribution., The second specific aim is to

(continued)

DD , Fonm 1473 COITION OF ) NOV 6313 OBSOLETE

(]
\’(,’.

1AM 73 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

o 360360 S —

B R e R R L LA o et U A O L L el




AFOSR-TR. 86-2042

Annual Report for the
Air Force Office of Scientific Research

w b
M y

The Ohio State University Research Foundation
1314 Kinnear Road
Columbus, Ohio 43210

e _ii 5 calimitode
for distripw.do8
Melvin L. Moeschberger
Associate Professor of Preventive Medicine
and
John P. Klein
Assistant Professor of Statistics
Title: Effects of Assuming Independent Component Failure Times,
if They are Actually Dependent in a Series System
Period Covered: October 1, 1984 to October 31, 1985 -
Principal Investigators: Melvin L. Moeschberger and John P. Klein
Phone: (614) 421-3878 or (614) 422-4017
Business Contact: Phillip V. Spina
Phone: (614) 422- 3730
/
Date of Submission: October 26, 1985 / i
F 7,7
// 7 ) }// /- //
Pl e / L
Z, VR A / L\
Melvin L. Moeschberger, .D. Ma¥tin D. Keller, M.D., Ph.D.
w Chairperson of Preventive Medicine
. ™
V' ) . - ——
JoWp P. Kla#h, Ph.D. Jagdish Rustagi, Ph.D. J
: CHhairperson of Statistics
,AIE}MM: CTFTCY 0F SCTENTTTIC RESEARCH (ARSC)
Lo FEMINTTTAL TO DTIC
St Pl to st R heves pomiiacgs 3 ~-3 19
IR S R P
NI SR
Tl lsion

SNl OUQO00
() t‘t“jb.:" v l'a\l‘e" "G’!'.‘J'i‘c'i.n

A A RSB A



Moeschberger, Melvin L.

A. Table of Contents
Topic Pages

Technical Section

Abstract

Specific Objectives

Introduction to Problem and SLgnlflcance of Study
Progress Report onThird Year's Work

Methods

Literature Cited ‘ 10-12
Appendices A,B,C,D,E 13

=7

O ooWne&W

E R S B2 R 58 442 £ Y B D S O R L R e



3

Moeschberger, Melvin L.

B, TECHNICAL SECTION

I. Abstract

~ The overall objective of this proposal is to investi-
gate the robustness to departures from independence of methods
currently in use in reliability studies when competing failure
modes or competlng causes of failure associated with a szngle
mode are present in a series system. The first specific aim
is to examine the 'error one makes in modeling a series system
by a model which assumes statistically independent component
lifetimes when in fact the component lifetimes follow some
multivariate distribution. The second specific aim is to assess
the effects of the independence assumption on the error in
estimating component parameters £rom life tests on series
systems. In both cases, estimates of such errors will be deter-
mined via mathematical analysis and computer simulations for
several prominent multivariate distributions. A graphical dis-~
Play of the errors for representative distributions will be
made available to researchers who wish to assess the possible
erroneous assumption of independent competing risks. A third
aim is to tighten the bounds on estimates of component relia-
bility when the risks belong to a general dependence class of
distributions (for example, positive quadrant dependence, posi-
tive regression dependence, etc.). - Major decisions involving
rellabxllty studies, based on competing risk methodology have
been made in the past and will continue to be made in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness-of the analyses to de-
partures from independent risks, an assumpt;on commonly made
by the methods currently in use.
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IT. Specific Objectives

The overall objective is to investigate the robust-
ness to departures from independence to methods currently in
use in reliability studies when competing failure modes or com-
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The approach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific objectives are:

l) to assess the error incurred in modeling system
life in a series system assumed to have indepen-~
dent component lifetimes when in fact the com-
ponent lifetimes are dependent.

2) to assess the error in estimating component param-
eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric models which
assume independent component failure times when
in fact the lifetimes are dependent and follow-
some plausible multivariate distribution.* |

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e.g., positive quad-
rant dependence, positive regression dependence,
etc.)o .

4) to develop tests of independence, based on data
collected from series systems, by making some
restrictive assumption about the structure of the
systems., **

* A plausible parametric multivariate distribution will be
one that satisfies one of the following conditions:

i) the distribution of the minimum of the component
failure times closely approximates widely accept-
ed families of system life distributions.

or ii) the marginal distributions closely approximate
the distributions of component failure times in
the absence of other failure modes.

**This objective has been added to the original objectives be-
cause it answers a natural question raised by our preliminary
investigation. ’ -
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o III. ' Introduction to Problem and Significance of Study

Alvin Weinberg (1978) in an editorial comment in the’
e published proceedings of a workshop on Envirommental Biologi-
i . cal Hazards and Competing Risks noted that "the question of .
'\' competing risks will not quietly go away: corrections for com-
,:,:: peting risks should be applied routinely to data.” The problem
o, of campeting.risks commonly arises in .a wide range of experi-
' . mental situations. Although we shall confine our attention
- in the following discussion to those situnations involving
W series systems in which competing failure modes or competing
o causes of failure associated with a single mode are present,
n ‘ it is certainly true that we might just as easily speak of
ey clinical trials, animal experiments; or other medical and bio—-

‘logical studies where competing events interrupt our study of

the main event of interest (cf. Lagokos (1979)). :

1,: ' Consider electromic or mechanical systems, such as.

P satellite transmission equipment, computers, aircraft, missiles
W and other weaponry consisting of .several components in series.
Usually each component will have a random life length and the
e life of the entire system will end with the failure of the

“j shortest lived component, We will examine two situations more
ey closely in which competing risks play a vital role.

First, suppose we are attempting to evaluate system life
from knowledge of the individual component lifetimes. Such
7 an evaluation will utilize either an. analysis involving math-
ans ematical statistics or -a computer simulation.. At a recent
B conference. on Modeling and Similation, McLean (198l) presented
e a scheme to simulate the life of a-missile which consisted of
X many major- components in series.- The failure distribution asso-
ciated with each component was assumed to be known (usually
e exponential or Weibull.) :To arrive at the systew failure dis-
iy tribogtion, the components were. assumed to act indepandently of .
ol each other. Realistically, this may or may not be the case.
b If the component lifetimes were dependent for any reason, the
0 camputed system failure distribution (as well as its subsequent
such as system mean life and system reliability for
a specified time) would only crudely approximate the true ..
distribution. The first specific aim of this proposal is to
" agcertain the error incurred in modeling system life in a
series system assumed to have independent camponent lifetimes

(i.s., risks) when, in fact, the risks are dependent.
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Second, suppose we wish to evaluate some aspect of the
distribution of a particular failure mode based on a typical
life test of a series system. The response of interest is the
time until failure of a particular mode of interest. Frequently
this response will not be cbservable due to the occurrence of
gsome other event which precludes failure associated with the
mode of interest. We shall term such competing events which
interrupt ocur study of the main failure modes of interest as

competing risks. . :
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COupeting risks arise in such reli;bility studies when

1) the study is terminated due to a lack of funds or the
. pre-determined period of observatzon has expired '
Type I censo:ing).

2)° the study is te:m;nated due to a pre-detezm;ned number
of failures of the particular failure mode of interest
being observed (Type II censoring).

3) some systems fail because components other than the
one of znterest malfunctzon.

4) the canponent of interest fails from scme cause other
than the one of interest.

In all four situations, one may think of the main event of
interest as being censored, i.e., not fully observable. In the
first two situations, the time to occurzence of’ the event of
interest should be independent of the censoring mechanism. In
such instances, the mzthodology for estimating relevant reliabili-~
ty probabilities has received considerable attention (cf. David
and Moeschberger (1978), Kalbfeish and Prentice (1980), Elandt-
Johnson and Johnsan (1980), Mann, Schafer, Singpurwalla (1974)
and Barlow and Proschan (1975) for references and discussion) -
In the third situation, the time to failure of the component of -
interest may or may not be independent of the failure times of

other components in the system. For example, there may be

common environmental factors such as extreme temperature which
may ‘affect the lifetime of several components. Thus the question
of dependent campeting risks is raised. A similar obsexvation
may be made with respect to the fourth situmation, viz., fajilure
times associated with different failure modes of a single com-
panent may be dependent. For a very special type of dependence,.
the models discussed by Marshall-Olkin (13967), Langberg, Proschan
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981)
allow one to convnrt depond-nt models into independent ones.

If£f no assunptians whatever are made about the type of
dependence between the distribution of potential failure times,
there appears to be little hope of estimating relevant component

.In some situations, one may be appreciably misled
(ct. Tsiatzs (1975), Peterscn (1976)). However, as Easterling
(1980) so clearly points out in his review of Birnbaum's (1979)

monograph

*there seems to be a need for some rohustness
studies. How far might one be off, quantita-
tively, if his analysis is based on incorrect
assumptians?'

The second specific aim will address this important
issue. First if a specific parametric model which assunmes
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Q;:"' independent risks has been used in the analysis, it would

w be of interest to know how the error in estimation:is

affected by this assumption of independence. That is, if

S ent specific parametric distributions are assumed

P for the failure times associated with different failure

< modes when we really should use a bivariate (or multivariate)
o distribution, then what is the magnitude of the error in

5 - estimating.component parameters? Seccndly, one may . wish to

: ~ allow for a less stringent type of model assumption, and ask
r- the same question with regard to the estimation erxror. That
:j is, if a nonparametric analysis is performed, assuming in-
N - dependent risks, when some types of dependencies may be

.~:g, presant, then what is the magnitude of the esﬁ.matiqn error?
. ' The third specific aim will attempt ‘to cbtain bounds on
o the component reliability when the failure times belong to
‘.,3 . a broad dependence class {e.g., association, positive quadrant
¥ ‘ dependence, positive regression dependence,. etc.), More

WS details will be presented in the methods section. :

- In summary, competii:g risk analyses have been performed
bl in the past and will continue to be performed in the future.
) This study will provide the user of such techniques with a
B clearer understanding of the robustness to departures from .. .
. independent risks, .an assumption which most of the methods
A currently in use assume. ;
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IV. Progress Report on Third Year's Work

A summary of the first and second year's work is reported in the annual reports
dated October 26th 1983 and October 26th 1984 respectively. We believe that during the
past three years we have made substantial progress in dealing with the objectives as
outlined on page 4. In addition to the papers and articles referred to in the first two
annual reports, we would like to mention some of the more recent work.

First, the recently published paper which investigates the problem of improving the
product-limit estimator of Kaplan and Meier (1958) when there is extreme independent
right censoring is presented in Appendix A. This paper looks at several techniques for
completing the product limit estimator by estimating the tail probability of the survival
curve beyond the largest observed death time. Two methods are found to work well for a
variety of underlying distributions. The first method replaces those censored
observations larger than the biggest death time by the expected order statistics,
conditional on the largest death, computed from a Weibull distribution. The Weibull is
chosen since it is known to be a reasonable model for survival in many situations.
Parameters of the model are estimated in several ways, but the method of maximum
likelihood seems to provide the best results. The second method replaces the constant
value of the product limit estimator beyond the last death time by the tail of a Weibull
survival function. Again parameters are estimated by a variety of methods with the
maximum likelihood estimators performing the best.

Second, a paper which obtains bounds on the component reliability, based on data
from a series system, for the Oakes (1982) mode! has been revised. Since this model has
the same dependence structure as the random effects model with w having a gamma
distribution, these bounds are good for a general class of distributions. The bounds,
which are determined by specification of a range of coefficients of concordance, are
found by solving a differential equation in the observable system reliability and crude life
on one hand and the unobservable component survival function on the other hand. This

revision is reproduced in Appendix B.
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y Third, we have submitted an overview ‘poper for publication which summarizes
: some of the work performed during the past three years. The results of this paper were
s presented in an invited talk to the Eastern North American Region of the Biometrics
- Society at Raleigh, North Carolina in the Spring of 1985. (See Appendix C for a copy of

|
o this paper.) !
|
|

’-
"’ . . . .
Finally, a paper has been developed which discusses some general properties of a
\
3 random environmental stress model. Estimation of parameters under the Gamma stress
: model is considered, and a new estimator based on the scaled total time on test :
N

transform is presented (See Appendix D). Part of the results in this paper were presented

- n

N at the International Statistical Institute meeting in Amsterdam in August, 1985. A copy
Y
. of that contributed paper is found in Appendix E.
N
» V. Methods
4
‘_ We refer to pages 8-52 of the original proposal for a discussion of the general
B
'.;.’ methodology.
\/
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A Comparison of Several Methods of Estimating the Survival
Function when There Is Extreme Right Censoring

M. L. Moeschberger’ and Joha P. Klein®

Departments of Preventive Medicine' and Statistics?, The Ohio State University,
320 West 10th Avenue, Columbus, Ohio 43210, U.S.A.

SUMMARY

When there is extreme censoning on the right, the Kaplan-Meier product-limit estimator is known to
be a biased estimator of the survival function. Several modifications of the Kaplan-Meier estimator
are examined and compared with respect to bias and mean squared error.

1. Introduction

In human and animal survival studies, as well as in life-testing experiments in the physical
sciences, one method of estimating the underlying survival distribution (or the reliability
of a piece of equipment) which has received widespread attention is the Kaplan-Meier
product-limit estimator (Kapian and Meier, 1958).

For the situation in which the longest time an individual is in a study (or on test) is not
a failure time, but rather a censored observation, it is well known that there are many
complex problems associated with any statistical analysis (Lagakos, 1979). In particular,
the Kapian-Meier product-limit estimator is biased on the low side (Gross and Clark,
1975). In the case of many censored observations larger than the largest observed failure
time, this bias tends to be worse. Estimated mean survival time and selected percentiles, as
well as other quantities dependent on knowledge of the tail of the survival function, will
also exhibit such biases.

A practical situation which motivates this study is a large-scale animal experiment
conducted at the National Center for Toxicological Research (NCTR), in which mice were
fed a particular dose of a carcinogen. The goal of the experiment was to assess the effects
of the carcinogen on survival and on age-specific tumor incidence. Toward this end, mice
were randomly divided into three groups and followed until death or until a prespecified
group censoring tiine (280, 420, or 560 days) was reached, at which time all those still alive
in a given group were sacrificed. Often there were many surviving mice in ali three groups
at the sacrifice times.

In general, we consider an experiment in which » individuals are under study and
censoring is permitted. Let ¢, ..., lm denote the m ordered failure times of those m
individuals whose failure times are actually observed (4, € --- € {). The remaining
n — mindividuais have been censored at various points in time. It will be useful to introduce
the notation S; to denote the number of survivors just prior to time ¢ ,,; that is, S; is the
number of individuals still under observation at time ¢,,, including the one that died at
! ,)- Then the Kaplan-Meier product-limit estimator (assuming no ties among the ¢ ,,) of

Key words: Adjusted Kaplan-Meier survival estimation; Bias of survival function; Life-testing; Right
censoring; Survival analyss.
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the underlying survival function, P(t) = P(T > ¢), is
" 1 for <y,
P(t) = - f] (S, = 1/S, for 1, €t<t,. )
]:)-| for (3 lmen
forj=1,..., m, where {n., = (. if the longest time an individual is on study is a censoring

time or t(,.,.., = = if the longan time an individual is on study is a death.

This paper first proposes, in §2, some methods of “completing” the Kaplan-Meier
estimator of the survival function by (i) replacing those censored observations that are
larger than the last observed failure time by their expected order statistics; (ii) using a
Weibull distribution to estimate the tail probability P(z), for ¢ > ¢.; and (iii) employing a
method suggested by Brown, Hollander, and Korwar (BHK) (1974). The second purpose
is to demonstrate the magnitude of the bias and mean squared error (MSE) of the Kaplan-
Meier estimator and to compare all methods of “completing” ﬁ(t) in the context of the
aforementioned mouse study, utilizing simulated lifetimes from exponential, Weibull,
lognormal, and bathtub-shaped hazard function distributions. These resuits are presented
in §3.

2. Completion of Kaplan-Meier Product-Limit Estimator

2.1 Expected Order Statistics

One method of attempting to “complete” P(¢), ¢ > ., would be to “estimate” the failure
times for those censored observations that are larger than the longest observed lifetime. Let
n. be the number of censored observations larger than f,,. A theorem regarding the
conditional distributions of order statistics states that for a random sample of size n from
a continuous parent, the conditional distribution of T\u), given Tip—n) = lin—ny, & >N = N,
is just the distribution of the (4 — 7 + n.)th order statistic in a sample of size 7. drawn from
the parent distribution truncated on the left at ¢ = f,,, (se¢ David, 1981, p. 20).

For computational purposes, take . as an estimate of the (n — n.)th order statistic. Then
find the expected value of the n. order statistics from the parent distribution truncated on
the left at .. Since the Weibull distribution with survival function P(r) = exp(—t*/6) has
been widely accepted as providing a satisfactory fit for lifetime data, it seems reasonable to
employ the results of Weibull distribution theory to complete P(¢), ¢ > t.. (It should be
noted that any distribution which is reasonable for the specific situation may be used.) The

~ expected values of Weibull order statistics up to sample size 40 for location parameter
e equal to | and shape parameter equal to .5 (0.5)4(1)8 may be found in Harter (1969). For
:'.";- larger sampie sizes, he states a recurrence relation which may be used.

ﬁs To compute expected values of the 7 order statistics in question, values for k and 4 must
AT be chosen. One approach is to use the maximum likelihood estimators, £ and §, computed
g by using all observations to estimate k and 6. A second approach, due to White (1969),
T uses least squares estimates of k and 6 obtained by fitting the modet

;:;; In(z ;) = (1/k) In 8 + (1/k) Ia[H(x )] 2)
P to the 4,ys where H(t ) is the estimated cumulative hazard rate at ¢, obtained from the

Kaplan-Meier estimator. [n our Monte Carfo study, we found the maximum likelihood
estimators performed better than the least squares estimators in all cases. Consequently,
the method of least squares will be dropped from future discussion in this paper.

The survival function for 2 Weibull random variable, truncated on the left at ¢, is

Pr{1) = exp(—(¢X ~ t¥)/6), 1> 1¢. (3)
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So, by the theorem on order statistics stated at the beginning of this section, the conditional

distribution of T,), given Tipen) = lir-ny (4 =n—=n.+ 1, ..., n) will be approximated

; 2 by the (u = n + n.)th order statistic in a sample of 7. drawn from (3). For simplicity, let
R j=u=n+n,sothatj=1,..., n.Now the expected value of the jth order statistic from

‘ \_ (J)is
N

E(T,-z.c)-m(’}‘_’ 1‘) f‘ HPHOY PO (™' /8) dt

nﬁi."

KN - _

By =n{2 1) [T or s RO @

6:, \

féftf:g where P( y) = exp(—y*/8), y = (t* ~ t£)'/% 3 0 and 7)., is the jth order statistic in a sample

of size n.. Equation (4) can also be written as

w3 E(T;n,) = m(’;‘_‘ 1‘) fo (0% + (&) MP()V ' [P(2))~ ket dz (5)

e where P(z) = =29, z= (y/6)"/* 3 0. Now E(T, be crudely estimated b

e z)mexp(—=29), z=(y . Now ,.:.,)may crudely esumated by

- BEZua)) + ) ®)
where E(Z;, ) is the expected value of the jth order statistic from a sample of size n.

’- &j' determined from Harter’s (1969) tables or recurrence relation, and § and £ are maximum

K -.::3 likelihood estimators of 9 and k, respectively.

:.;. These n. estimated expected order statistics may then be treated as “observed” lifetimes - -

N in adjusting (or “completing”) the estimated survival function computed in (1). The area

under the estimated survival function up to . remains unchanged. The area under the

::i;:' extended estimated survival function based on the 7. estimr.ted expected order statistics is

i then added to the initial area to obtain a more precise estimate of P(s) [estimated order

;::..:: statistic (EOS) extension].

iy 5

g 2.2 Weibull Maximum Likelihood Techniques

,tf,t' A straightforward approach to completing P(t) is to set

429 B(r) = exp(=t/8)  for 1>t (7

"':‘;* Estimates of k and 4 based on all observations can be obtained by either the maximum

g likelihood (WTAIL) or the least squares method. However, our study found the completion

using maximum likelihood estimators was always better in terms of bias and mean squared
AN error.
One suggestion for ostensibly improving this estimator would be to “tie” the estimated
2.‘ tail to the product-limit estimator at /.. Two methods were attempted to accomplish this
250 goal. First, the likelihood was maximized with respect to k and 9 subject to the constraint
that exp(=t/8) = B(z.). This method will be referred to as the restricted MLE tail probability
estimate (RWTAIL extension). Second, a scale-shift was performed on the tail probability

NS in (7) to tie it to the product-limit estimator. This method led to higher biases and mean
) ;‘- squared errors of the survival function and will be dropped from further discussion in this
i‘.’l. : )

|’:|.

e 2.3 BHK-Type Methods

The Brown-Hollander-Korwar completion of the product-limit estimator sets
Uy _ B(t) = exo(=t/6%) for (>t (8)
Q::c .
i
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where §° satisfies B(;) = exp(—t/9®). In the BHK spirit we tried to complete P(¢) by a
Weibull function which used estimates of k and 4, k* and 4*, that satisfied the following -

two relations:

and

B(tom) = exp(—tiny/0°)

B(tim-1y) = exp(~tin-1/0).

The latter method also led to consistently poor performance and the results will not be

presented.

Table 1
Bias/100 (and MSE/100) for estimating mean survival time for various methods of completion

Weibull  Restricted

Mean % Estimated WTAIL Weibull
censored BHK order statistic exten- RWTAIL
Distribution s &t 560 days K-M extension extension sion extension
Weibull 400 18.7 =2.000" -{.462 -.101* 131 206
(4.034)" (2.271) (1.172) (1.160) (1.543)
k=5 $00 2.3 -2.802* -2.078 -.176* 208 .299
(7.886)" (4.498) (1.922) (2.344) (3.292)
600 25.5 ~3.625" =2.704 -.187* 344 479
(13.179)* (7.522) (3.025 (4.275) (6.031)
400 24.6 -991* -.047 -.046 016 0379
(o1~ (2159 (257 (275) (.343)
k=] 500 326 -1.632 -.049 -047 073 116
(2.696)" (.416) (.53%) (.508) (.705)
600 39.3 -2.359" 022* 034 .140 214
(5.592 (.596) (. 987) (1.023) (1.353)
400 1.5 -.036 136" -.00% .003* 004
(.012) (.083)* .013) (.014) (.014)
k=4 500 346 -3l4 1.50™ =020 014 019
(.109) (2.830) (.036) (.041) (.044)
600 59.9 -.903 5.982" 144 .028* 039
(.82) (41.430)" (4.168) (l1e7y (157
Lognormal 400 20.6 -.868" -.178% -.544 -.586 -412
1" 179" (.363) (.403) (.267)
k=] 500 29.0 -1.427" -.150* -.365 -918 -.696
(2.060)" (323 (.855) (.938) (.644)
600 36.9 -2.079" -022* -1.234 -1.281 -~1.038
(4.345)~ S71y (1.679) (1.800) (1.301)
400 8.6 -.070 129% -.047 -.053 -.027
(014 (.056)* (.014p (014 (.014p
k=4 500 29.1 -.330 1.033" -.170 .i81 -.135*
(.118) (1.459)" (.051) (.055) (.043)
600 54.5 -.853 4430 =391 -392 -.356"
(.734) (23.159)" (.199) (.199) 177"
Bathtub 400 18.6 -1.069 -.185 -.170 1.125" 063°
(1.17%) (.234) (.260) (1.745)" (.361)
p=.l 500 26.1 -1.72" ~259 -202 1.523 .046®
(2.996) (427" (.560) (3.230" (.608)
600 326 -2.452" ~.362 -.310 1.761 047
(6.043)" 727 (.982) (4.490) (1.254)
400 8.1 -1.786" -1.543 -1.547 -.936 43
(3.218)" (2.463) (2.476) (1.081) (.544)"
pwm .4 $00 13.3 -2.370" -1.826 -1.814 -.825 .585*
(5.649)" (3.472) (3.446) (1.031" (1.303)
600 18.7 -3.072 -2.191 -2175 -.875 .841°
(9.466)" (5.013) (4.983) (1.285 (2.792)
* Best estimation method.

* Worst estimation method.
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3. A Comparison of the Various Methods

A simuiation study of data such as that collected at NCTR was performed. Three groups
of 43 lifetimes were simulated with all testing stopping at 280, 420, and 560 days,
respectively, for the three groups. Distributions with mean survival times of 400, 500, and
600 days were used. The generated lifetimes greater than or equal to the sacrifice time for
each particular group were considered as censored. The remaining set of observed lifetimes,
along with the number censored at the three sacrifice times, constituted a single sample.
For each of the distributions studied, 1000 such sampies were generated. Weibull distribu-
tions with shape parameters .5, decreasing failure rate, 1, constant failure rate, and 4,

Table 2
Bias/100 (and MSE/100%) for estimating Y0th percentile for various methods of completion
Restricted
Estimated Weibull Weibull
BHK order statistic WTAIL RWTAIL
Distribution P K-M extension extension extension extension
Weibull 400 -5.017 -2.858 1.691 234" 458
(25.185)" (9.358) (16.424) (7.524 (10.812)
k=5 500 -7.655 —4.620 1.897 418° 642
(58.604)" (22.711) (24.276) (14.319 (21.442)
600 -10.306 ~6.390 2213 734 1.064
(106.21)" (41449) (36.899) (25.419y 37.911)
400 -3.610" 064" 248 084 .067
(13.035)" (1.892y (2.423) {1.980) (2.945)
k=1 500 -5913" 096" 289 121 306
(34.963) (2.995) (4.681) (4.361) (5.903)
600 -8.216" 244° 610 418 550
(67.459)" (4.198) (9.247) (8.331) (10.792)
400 -.045 098 -.007* -.037 =011
(.038y (.236)" (.060) (.047) (.063)
k=4 500 -1.195 5324 -.031 -.026 .024*
(1.429) (33.091)" (.146) (.141) «m
600 -2.554 17.913" .120 .090 .068°
(6.524) (355.02)" (.794) (.676) (.641)
Lognormal 400 -2.628" ~044" -1.263 -1.758 -.967
(6.908)" (1.526) (1.979) (3.407) (1.673)
k=1 500 —4.680" 213 -2.354 -2.718 -1.908
(21.902)" (2.708) (6.153) (7.909) (4.751)
600 -6.736" .759* -3.507 -3.766 -2.9%0
(45.373)" (4.764) (13.123) (14.981) (10.257)
400 ~.085 .161 -.038 -.162" -.024*
(.060) {.409)” (.081) (.065) (.093)
kw4 500 -1.251 3172 ~.584 -657 -484°
(1.566) (17.654)" (.403) (.49%) (318"
600 -2.621 13.695 -1.214 -1.236 —-1.158°
(6.872) (210.30)* (1.616) (1.662) (1.498)®
Bathtub 400 -3.629% -177 0353 - 104 .108
(13.16T" annv (2.052) (2.058) (3.190)
pe.l 500 —6.068" -.457 -071 -.208 004"
(36.826)" (2.955p° (4.702) (3.619) (5.24%)
600 -1.997" -.318 043 -.244 -014°
{63.954)" (4.330) (7.786) (7.608) (9.923)
400 ~-.347 .143* 276 1.154° 981
(273 (.844) (1.078) (3.8 (4.747)"
p=.4 500 -1.425 S214¢ .764 1.699 1.718*
(2.039%) (1.5409 (2.067 (8.574) (10.714)"
600 -3.554" -.137 132° 2.304 2.450
(12.628)" (1.804)° (2.352) (17.530) (22.456)
* Best estimation method.

* Worst estimation method.
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increasing failure rate, were used. Lognormal distributions, failure rate changes from
increasing to decreasing, with first two moments comparable to the above Weibull distri-
butions with K = | and k = 4, were also used. Finally, a bathtub hazard model of Glaser
(1980), failure rate changes from decreasing to increasing, was used. This distribution is a
mixture of an exponential of parameter A\ with probability | - p and a gamma with
parameter A and index 3 with probability p. Mixing parameters of p = .1 and p = .4 were
used.

The bias and MSE for the estimation of the tail probabilities, i.e., the completed portion
of the product-limit estimator, were caiculated for each hypothesized distribution and for
each competing method of completion. Since these resuits were extremely simijar to those
found in estimating mean survival time, 4 = {3 B() di, we show only the bias and MSE
of each competing estimator of x in Table 1. This also allows us to demonstrate the
magnitude of the bias and MSE of the product-limit estimator of x. The bias and MSE for
estimating the 90th percentile are also presented for the various estimation methods in
Table 2. As one would expect, the Kaplan-Meier (K-M) estimator performs considerably
more poorly than the other estimation schemes. The BHK extension does very well if the
underlying distribution is exponential or lognormal with first two moments compatble
with the exponential. BHK does reasonably well for the bathtub-shaped hazard model, but
it performs very poorly for the Weibull with increasing failure rate and for the lognormal
with first two moments compatible with the Weibull.

The remaining three extensions (EOS, WTAIL, and RWTAIL) appear to be somewhat
comparable. Each of them is best under certain circumstances although many times the- -
biases and MSEs are so close to one another that they are essentiaily equivalent. Only the
EOS extension has the desirable property of never being worst. It usually is competitive
with the method that is best. Ordering the extensions from the standpoint of simplicity,
from simplest to most complex, we have BHK, WTAIL, RWTAIL, and EOS.

[n summary, the Kaplan-Meier estimator should probably be extended in the presence
of extreme right censoring. The choice of extension depends on one’s knowledge of the
distribution of lifetimes under consideration and the extent of computer facilities available.
If the data foilow an exponential-type distribution or if no computer facilities are present,
the BHK method is the extension of choice due to its simplicity. If the data exhibit a
nonconstant failure rate and computer facilities are available, then the RWTAIL or EQS
extensions seem to be advisable.
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RESUME

On sait que I'estimateur de Kaplan-Meier est un estimateur biaisé de la fonction de survie quand le |
pourcentage d’observations censurées est trés élevé. Plusieurs modifications de I’estimateur de Kaplan- (
Meier sont examinées et comparées du point de vue de leurs biais et écarts moyens quadratiques.
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L. [NTRODUCTION

A common problem in survival analysis is to estimate the marginal
survival function of the time, X, until some event such as remission,
component failure, or death due to a specific cause occurs. Often obser-
vation of this main event of interest 1is impossible due to the occurrence
of a competing risk at some time Y < X, such as censoring, failure of a
different component in a series system, or death from some cause not
related to the study. Standard statistical methods, which assume these
competing risks are independent, estimace the marginal survival function
by the Product Limit Estimator of Kaplan and Meier (1958). This estimator
has been shown to be consistent for the marginal survival function by
Langberg, Proschan and Quinzi (1981) when the risks follow a constant
sum model defined by Williams and Lagakos (1977). When the risks are
not in the class of constant sum models, the Product Limit Estimator
is inconsistent and, in such cases, the investigator may be appreciably

misled by assuming independence.
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In the competing risks framework we observe T = minimum(X,Y) and
I = x(X < Y) where X(-) denotes the indicator function. Tsiatis (1975)
and others have shown that the pair (T,I) provides insufficient information
to determine the joint distribution of X and Y. That is, there exists both
an independent and a dependent model for (X,Y) which produces the same
joint distribution for (T,l). However, these "equivalent" independent
and dependent joint distributions may have quite different marginal
distributions. Also, due to this identifiability problem, there may be
several dependent models with different marginal structures which will
yield the same observable information, (T,I). In light of the consequences

of the untestable independence assumption in using the Product Limit

estimator to estimate the marginal survival function of X, it is important

G
A s

l"

to have bounds on this function based on the observable random variables

£, A

(T,I) and some assumptions on the joint behavior of X and Y.

Peterson (1976) has obtained general bounds on the marginal survival

SRR A

W) function of X, S(x), based on the estimable joint distributiom of (T,I).
Let Ql(x) = P(T>x, I =1), and Qz(x) = P(T>x, I =0 ) be the crude

ﬁ% survival functions of T. His bound, obtained from the limits on the joint

t:f distribution of (X, Y) obtained by Fréchet (1951), is

95

. 1.1

:} Ql(x) + Qz(x) < S(x) < Ql(x) + QI(O)- :

<

I~ Since these bounds allow for any dependence structure, they can be very wide

e
.

and provide little useful information to an investigator.

I‘.‘

:? Fisher and Kanarek (1974) have obtained tighter bounds on S(x) in
‘v

- terms of a dependence measure a. Their model assumes that simultaneous
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to the occurrence of Y an event occurs which either stretches or contracts

the remaining life of X by an amount associated with a. That is,

P(X > x|]Y =y < x) =P(X>y+ a{x-y)|Y > y + a(x~y)). A large a, for

example, implies that a small survival after censoring is the same as g-times
as much survival if censoring was not present. They show that if @ is assumed
known, then the marginal survival function can be estimated from the
observable information. Also these estimates, ga(x),are decreasing in .

For their bounds, the investigator specifies a range of possible values

a < a<a, so that Sa (x) < S(x) <5 (x).

u 4G
Recently, Slud and Rubenstein (1983), have proposed general bounds.

They show that knowledge of the function ..

P(x < X < x +8]X > x, Y < x)
P(x < X < x +6[{X >x, Y > x)

P (x) = lim
5+0

along with the observable information (T,I) is sufficient to uniquely

h
BOCA Y

determine the marginal distribution of X. These estimates §p(t) are

decreasing functions of p for fixed x. Their bounds are obtained by

A ‘Ii‘l‘
| I 3

specifying a range of possible values p,(x) < p(x) < p,(x) so that if
1 - - M2

¥
.
)
v

0

o(x) is the true function §pz(x) < S(x) < §°1(x)'

o
E3 In this paper we obtain different bounds 'on the marginal survival
iﬁ function by assuming a particular dependence structure on X and Y. These
o
sg bounds are functions of the observables (T,I) and a familiar dependence
»,°

:i: measure, the concordance probability between X and Y. In Section 2 we
o

i describe this model in detail. In Section 3 we derive the bounds and show
hg consisfency when the dependence parameter is known. In section 4 these

N

bounds are compared to those obtained by Peterson, Fisher and Kararek,

and Slud and Rubenstein.

;
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[I. THE MODEL

The dependence structure we shall employ to model the joint survival
was first introduced by Clayton (1978) to model association in bivariate
lifecables and, later, by Oakes (1982) to model bivariate survival data.
Let S(x) = P(X > x), R(y) = P(Y > y),with S(0) = R(0) = 1, be the
continuous univariate survival functions of the death and censoring times,
respectively. For 6 > 1 define F(x,y) = P(X > x, Y > y) by

1 }6—1

F(x,y) = [{gT;T } -1 _

1 -1/(8-1)
+ {EY;T 1] (2.1)

This joint distribution has marginals S and R. As 8+1, then (2.1) reduces
to the joint distribution with independent marginals. For 6+, F(x,y) =._.
min(S(x), R(y)) the bivariate distribution with maximal positive association
for these marginals. The probability of concordance is 8/(8 + 1) so that
Kendall's (1962) coefficient of concordance is T = (6 - 1)/(8 + 1) which
spans the range 0 to 1.

This model has a nice physical interpretation in terms of the
functions A(x|Y = y) and A(x|Y > y), the hazard functions of X given Y = y

and X given Y > y, respectively. From (2.1) one can show that

A(x]Y = y) = OA(x|Y > y)
or

P(X > x|Y = y) =[P(X > x|Y > y)]f9 (2.2)

For 9 >1 the hazard rate of survival if censoring occurs at time y is
8 times the hazard rate of survival if censoring does not occur at

time y. This implies that the hazard rate after censoring occurs is

‘- AN Ty N ® ™, -
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5
accelerated by a factor of 6 over the hazard rate if censoring had not
occurred. Also when 8 = 1, (2.2), reduces to the condition required by
Williams and Lagakos (1977) for a model to be constant sum and hence for
the usual product limit estimator of S(t) to be consistent (See Basu and

Klein (1982) for details).

Oakes (1982) also shows that (2.1) can be obtained from the following

1 ,6-1

random effects model. Let S*(x) = exp {- [3?;7] +1} and let Rx(y) be

similarly defined. Let W have a gamma distribution with density
1

A -1

gﬁ:kxwe-l e ¥ and conditional on W = w let X,Y be independent with

survival functionms {SKX)}V and {R*(y)}w. Then, unconditionally, X,Y have
the joint survival function F(x,y) given by (2.1).

For fixed marginals S and R the joint probability density function,
f(x,y), can be shown to be totally positive of order 2 for all 6 > 1.
This implies that (X,Y) are positive quadrant dependent. 1In parcicular,
one can show that for S,R fixed the family of distributions
F = {F(x,y): 6 > 1} is increasing positive quadrant dependent in 0 as

defined by Ahmed, et al. (1979).
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[II. BOUNDS ON MARGCINAL SURVIVAL

Suppose that X and Y have the joint distribution (2.1) and let

T = min (X,Y), then the survival function of T is

1

F(T) = ([S(c)]e_l +

1
1 .6-1 - =
[R(t)] - 1] 8-1

and the crude density function associated with X,
q.(t) = =S P(T < €, X < Y), is given by
1 dt ’ ’ 8
t
ay(e) = 8 (e e,
s7(c)

where s{(t) = -dS(t)/dt.

Now consider the differential equation

s(t)/Se(t) = q‘.L(t:)/[I"(C)l6

and suppose O is known. Then the solution of (3.3) for S(t) is

. 1
' q,() (BT
So(e) = [1 +(0-1) b = du] ©D iee>1
(F(w)P
t QI(U) '
= exp( - é F( ) du) ife=1.

3.1

(3.2)

(3.3)

(3.4)

The functions F(-) and ql(') are directly estimable from the data one

sees in a competing risks experimenc, Let Tl' ve ey

test times of n individuals put on test and let Ii' i=1, ...,

Tn denote the observed

nbel or O

according to whether the Ti was an observation on Xi or Yi’ respectively.
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7
a

Lx(T <e, L, =1).

n
Define F(t) = Ix(T. > t)/n and 6 (c) =
i 1 1 i

i=1 i

Then if 6 is known, a natural estimator of Se(c) is

t d'31(“) 1
Se(c) = [1+ (8-1) é [ﬁ(U)P ] (e-1) ifa>1
(3.5)
t dal(u)
= exp( - | — ) if o =1
0 F(u)

For 8§ = 1, this estimator is of the form of the hazard rate estimator
proposed by Nelson (1972). The estimators (3.5) can be expressed in

the following form for computation purposes,

1

§9(c) = exp|- ! oot D) if 8 =1
Tty =1
(3.6)
1 1
(1 + (6-—1)ne-l I Ta-i+D) 8 - -1
T(i)<t'1(i)-l
if 8> 1

where T(l)' ey T(n) are the ordered death times.

For 9 known and if the true underlying joint distribution of (X,Y)
is of the form (2.1) then §e(t) is a consistent estimator of S{(t) as shown

by the following theorem.

Theorem 1. Let (X,Y) have the form (2.1) with marginals S(c), R(t)

respectively. Let 8 > 1 be known. Then on the set where S(t) > O we have

1

Se(t) + S(t) a.s.
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Proot:
For 8 = 1, the result follows by a theorem of Langberg, Proschan and
Quinzi (1981). Suppose that 8 > 1. Note that al(c) ~Q,(t) a.s. and

F (u) = F(u) a.s. by the strong law of large numbers. Since §e(c) is a

© 4 (w )
continuous function of = % in the support of F(u), it suffices to show
0 [F(uw]
L A e t B
dQ, (u) dQ; (u)
I - 8 hd — @  a.s.
0 {F(u) 0 [F(u)

Now, after an integration by parts,

t -~ -~
dQ, (u) Q, (t) -

0 (F(u)] (F(e)]™ O F (u)

51<c) Tt L t 1
- 0 [Q) - QWIdGy ) + g Qud(E, )

[F(t)) 0 F (u) 0 F~ (u)

q, () - qty °©

- - QW) - QG )
(F (u)] 0 F~ (u)
t
.dQ, (u)

+ :—L——g (3.7)

0 F (uw)

By the dominated convergence theorem
t
lim dQl(u) dQl(u) s
e —_— 1l LS.,
0 Fef o f
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= 0. a.s.,

[F (u)1®
and

lim sup {lal(u) - Ql(u)l} = 0, a.s.

n-—-e

Hence, applying the above results to (3.7), the result now follows: //

To obtain bounds on the net survival function based on data from a
competing risks experiment, we proceed as follows. First, note that from
(3.5) it is true that §e(c) is a decreasing function of 6 for fixed t.

t . .
Also, as 0 ~+ 1* we have Se(t) texp (-, F l(u)dQl(u)).

0
which provides an upper bound. Notice that this upper bound corresponds
to an assumption of independence., As 8 + = one can show that §e(t) + f(t)
which corresponds to Peterson's (1976) lower bound.
In practice che'above bounds, with 8 = 1, », while shorter than
Peterson's bounds, may still be quite wide,
Tighter bounds may be obtained by an investigator specifying

a range of possible values for 8. If the sample size is sufficiently

large and 61 <8< 62. then gez(t) < s(e) < Sel(c). Specifying 61, 92

L < T < 12 for the

coefficient of concordance T since 8 = (1+71)/(L ~T). Hence the primary

is equivalent to specifying a range of values Tt

~

value of Se(c) is in putting bounds on S(t) rather than on estimation of

S(t).
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10
[V. EXAMPLE AND COMPARISONS

To {llustrate the bounds obtained in the previous section, consider
the mortality data reported in Hoel (1972). The data was collected on a
group of RFM strain male mice who'were subjected to a dose of 300 rads of
radiation at age 5-6 weeks. There were three competing risks, thymic
lymphoma, reticulutum cell sarcoma, and other causes of death. For
illustrative purposes we consider reticulum cell sarcoma as the risk of
interest.

Table 1 reports the value of §6(c) for concordance v = (8 - 1)/(8 + 1).
The value of §e(c) at T = 0 corresponds to Nelson's (1972) hazard rate
estimator assuming independence. Peterson's upper and lower bound
(t = 1) are also reported as are Fisher and Kanerek's bounds and the Slud
and Rubenstein bounds for several values which reflect a positive
association between risks.

From Table 1 we first - note that Peterson's bounds are very wide.
Substantial improvement is obtained if one assumes a non-negative
dependence structure between risks (See Table 2). Further tightening
of these bounds is achieved by assuming that Tt is in the range 0 to .5
where the width of the boundaries is at most about 502 of that of Peterson's
bounds.

Substantial improvement in the general bounds is also obtained by
the bounds of Fisher and Kanerek or Slud and Rubenstein. The bounds of
Fisher and Kanerek assume a specific censoring pattern and require a
specification of a stretching constant a. Without some additional informa-

tion, such specification may be impossible. Slud and Rubenstein's bounds

are for the general dependence structure. Their bounds require the




f

T N A A

T e g
Lo ~'

w

S P

hale At deat e aad e 8o oy g

At AR At dk il el o ek 4k d Luad 24 2 g at aig N O N T O T T M TR T

11
specification of the p(t) function. This function {s a quantity which
is not easily conceptualized by investigators from either a statistical
or biological perspective. This makes it questionable whether reasoable
upper and lower bounds on p(t) can be extracted from one's prior beliefs.
The major advantage of the bounds printed in this paper is that they
require only the specification of an upper and lower concordance, a

measure quite familiar to most investigators and easily explainable to

nonstatiscticians.
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e Table 2

: RELATIVE SIZE OF THE BOUNDS ON NET SURVIVAL
A . FOR AN ASSUMED DEPENDENCE STRUCTURE

AS COMPARED TO PETERSON'S BOUNDS

e Time 0<t<l 0<t<.5 0<t<.?
e 350 .9707 .0879 .2674

525 .9352 . 2449 .5931

A 600 .7338 .5171 .6787

620 .6722 .5120 .6298

= 650 .5009 .4420 .4870

675 .3831 .3576 .3797

& 700 .2883 .2767 .2833

oo 750 .0600 .0600 .0600
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INDEPENDENT OR DEPENDENT COMPETING RISKS?
DOES IT MAKE A DITFERENCE

John P. Klein M.L. Moeschberger
Department of Statistics Department of Preventive Medicine
The Ohio State University The Ohio State University
Columbus, Chio 43210 Columbus, Chio 43210

. ABSTRACT

This article investigates the consequences of departures from
independence when the component lifetimes in a series system are
exponentially distributed. Such departures are studied when the
joint distribution is assumed to follow either one of the three
Gumbel bivariate exponential models, the Downton bivariate
exponentml or the Oakes bivariate exponential model. Two
distinct situations are considered. First, in theoretical modeling
of series systems, when the distribution of the camponent lifetimes
is assumed, one wishes to compute system reliability and mean
system life. Secord, errors in parametric and nonparametric
estimation of component reliability and component mean life are
studied based on life-test data collected on series systems when
the assumption of independence is made erroneously. Systems with
TWO comoonents are studied.

KEY WORDS: Compecting risks:; Component life: Modeling series
systems; Robustness studies; System reliability;
Gumbel bivariate exponential; Downton bivariate
exponential; Cakes bivariate exponential.
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. ) 1. Introduction

N

e Consider a system consisting of several components linked in
AN R

R~ series. For such a system the failure of any ons of the components
)

causes the system to fail. In a biological or medical context
0 we can consider the components to be different lethal diseases
‘; and/or different reasons for removal from the study. In a clini-
" cal trials framework the primary response of interest, death or
' remission, and censoring can be considered as components of the

B system. This general formulation has been detailed in the theory

: of campeting risks (cf. David and Moeschberger (1978)).

E A camon assumption in such a formulation is that the
component lifetimes are statistically independent. Several

" authors have shown that based on data from series systems only,

N this assumption, by itself, is not testable because there is no

::? way to distinguish between independent ar dependent component

lifetimes (see Basu (1981), Basu and Klein (1982), Miller (1377,
Peterson (1976), etc.). However, several authors (see Lagakos
(1979) p. 152 and Easterling (1980) p. 131) have pointed out the
need to determine, quantitatively, how far off one might be if an

! analysis is based on an incorrect assumption of independence.
. To study the effects of erroneously assuming independernce we
:':' shall assume that each of the components have exponentially dis-
! tributed lifetimes when tested separately and that the property of
f:,_ marginal exponentiality will be preserved even though some
, deperdence may be induced when the camponents are linked in series.
‘J' The assumption of exponentially distributed component lifetimes
h has been made by Mann and Grubbs (1974), when finding confidence
R bounds on System reliability, Boardman and Kendall (1970), uhen
= estimating component lifetimes from system data, and Miyamura
' (1982), when cambining component and sytem data. (See Barlow and
"“ : Proschan (1375) or Marm, Schaffer, and Singpurwalla (1974) for a
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more complete review.) We shall model the dependence structure by
the three models of Gumbel (196Q), a model proposed by Downton
(1370), ard a model described by Oakes (1982)., These models are
briefly described in Section 2.

The effects of a departure from the assumption of independent
d.'mpormt lifetimes will be addressed for two distinct situatiens.
The first situation arises in modeling the performance of a
theoretical series system constructed fram two camponents. Here,
based on testing each component separately or on engineering
d&sig\'principls, it is reasonable to assume that the components
are exponentially distributed with known parameter values. Based
on this information, we wish to predict parameters such as the
mean life or reliability of a series system constructed from
these components. In Section 3 we describe how these quantities
are affected by departures from indeperdence.

The second situation involves making inferences about
component lifetime distributions from data collected on series
systems. Commonly, data collected on such systems are analyzed
by assuming a constant-sum model, of which indeperdence is a
special case (compare Williams and Lagakos (1977) and Lagalos and
Williams (1978)). In Section 4.1 we study the properties of the
maximum likelihood estimators of the component mean life calcu-
lated under an erronecus assumption of independent exponential
component lifetimes as mentioned above. Because of the wide
spread use of the ncnparemetric estimator proposed by Kaplan-

Meier (1958) for the camponent reliability we study in Section 4.2,

its properties, uhen the marginal reliabilities are exponential
and independence is incorrectly assumed.
2. The Models

Consider a two campanent series system with component life
lengths X, X,. Supposeﬂ\ateachxi‘hasanmtia.l survival

-2-
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:," function
‘¥,
‘!‘ = - -
:" (2.1) Fi(t:) a F()(i > t) = exp( x"_ t), Ai >0, t>0.
Ko This assumption is made on the basis of extensive testing of
-~ each camponent separately or on knowledge of the underlying |
::-j mechanism of failure. \‘
, To examine the effects of a departure from independence we j
RO consider five bivariate exponential models, each with marginals
" equivalent to (2.1). The first three models are due to Gumbel
2 (1960); the last two models are due to Downton (1370) and Gakes
Y (1982).
b 2.1 Gumbel's Model A
DY For this model the joint survival function is
,»‘: - )
_:: (2.2) P(xl > %, X, > x2) = exp(- Ay - A2x2 - )“12"1"2)'
N
W xl,xzio,xl,xz>0,oixlzixlxz. !
by The correlation between X, X, is
! AJA
0 . _ L2 - -
o o= Y exp(AjA /Ay ) Ej(= Ajhp/A10) = 1,
e, ’
i . . -
where Ei(z) = f:z _e__xgu(-u) du is the ‘integrated logarithm
o
: For this model o varies from -~ .40365 to 0 as Xlz decreases from
,.";. A\{A, to 0. It is never positive. The regression X, on X; is non-
' leanear with )
\ EQX X, = %)) = (Ap * A% = Apa/agh/ O * Ay %007
L~
j' 2.2 Gumbel's Model B
_‘ For this model the joint survival function is
‘r (2.3) P> %, X, > xy) = exp(- A% - x,zxz){l + w(l-exp(—klxl))
L} .
B Q- el= Ay} Aps Ay 270y Xp5 Xy 20, = 14 < p < 1/4.
‘}:’. The correlation, ¢, may be positive or negative. The regression
1
3 | -
(Y
"33
0
L}
u
)
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c.'ufxzonx1 is again rnonlinear with
ECQIX, 2 %) 3 {1 + 2 -4 exp(- Azxz)}/‘»\l.

The effects of a departure from independence on modeling system
reliability and estimating camponent reliabilities has been studied
in detail in Moeschberger and Klein (1984).

2.3 Gumbel's Model C

For this model the joint survival function is

- m mql/m
PIX) > %7, Xy > %) = expl= [(Ayx)" + (Ax,)7] },

Xl,lz >0,tn:_l,x1,x2> Q.
The correlation is

Pz (4 + 2m) /2 (cos © sin 8)®

‘.-.-Bam de-l
0 |eose® + sin 6™

which varies from 0 to 1. For this model m = 1 corresponds to
independerce and as m + =

(2.5) E’(X1 > %, X 2 xz) -~ minimm (exp(- Xlx.l), exp(- sz.z)]
the Fréchet (1958) upper bound for these marginals.

2.4 Downton's Model

Downton (1970) suggests modeling bivariate exponential systems
by a successive damage model. This model assumes that in a two
component system the times between successive shocks on each
component have - independent exponential distributions-and -that the
mumber of shocks required to cause each component to fail follows
a bivariate gecmetric distribution. The joint probability
density function of the camponent life times is

(2.5) £0g5%,) = A, exp(— g%y + Azxz))IO(Z oAy "1"2)'
15 — - T 1-e
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L where Iu(-) is the modified Bessel function of the first kind of

§ ordet‘ze.no,a.rdkl..kz>0,x1,x2:_0,Of_p_<_l. The correla-

.‘,, tion between X, X, is p which spans the interval [0,1]. Asp =1
* the joint survival function of X, » X, approaches the upper

;‘3 Fréchet distribution (2.5). For this model

4 = = -

:Ev . I-:(xll)(,Z x.z) Qa O/)‘l +0 Azlekl.

.5 [y

s 2.5 Oakes' Model

f‘ . Oakes (1982) has proposed a model for bivariate survival )

&N data. This model was first proposed by Clayton (1378) to model

I association in bivariate lifetables. Special cases of Oakes'

Q) general model have been suggested by Lindley and Singpurwalla (198S)
\ ard Hutchinson (1981).

o For this model the joint survival probability is

2 . -/3-1)

& (2.7) P(X > x;, X)> %)) = [exp(kl(e—l)xl) + exp(xz(e-l)xz)-l.] =
| Nhemkl,kz>0,6_>_l,x1,x210.

o = 1 -

W For 8 = 1, X;» X, are independent and E’(X1 > %, X, > x2) (2.5)
fj as 8 - ». For this model Kendall's (1362) coeffcient of concordance

s . . .

> ; is v = (8-1)/(8+l) which spans the range 0 to 1. The correlation,
’ p, also spans the range 0 to 1 and is found numerically.

\_ ) This model has the following physical interpretation. Let

159

olx) [Xy 2 x,) and r(xllx,z > x,) be the conditional failure rates
of X, given X, = x, and X, > x,. Then r{x;[X, = x,) = 8 rlx) [X, > x,).
"' The model can also be derived from a random effects model.

” This formulation assumes that when the conponents are tested
“., separately under ideal conditions the component swrvival functions
5‘3 are Si(t) = expl- e:cp(xit(e-l)) +1), i =1, 2, and that when the
= two components are put in a series system in the operating
envirorment there is a random factor W which simultaneously changes
‘ each component life distribution to S(t).. ££ W has a gamma
.'; distribution with density function £(x) aw (F—D'l e then,
1 -5-
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unconditionally, the joint survival function (2.7) holds.
2.6 Fréchet Bourds .

Fréchet (13958) obtained bounds of the joint survival functions
which can be obtained for any set of marginal distributions. For
exponential marginals these are
X, e

* "L QLR 2, Xy g) <

=A% =A%
MINDIM (e 11, e 2 0.
For this set of marginals the lower Fréchet distribution has
correlation -.69% and the upper Fréchet distribution has
correlation 1.0. These are the minimal and maximal correlations

for exponential marginals.
3. Errors in Modeling System Life

MAXDMUM (e

Suppose that based on extensive testing or based on theore-
tical considerations each of the two components in a series
system is known to have an exponential distribution, (2.1) with
marginal means l/Xl, l/xz, respéctively. It 1s of interest to
predict the system reliability F(t) = P(X; > t, X, > t) and the

system mean life u r F(t) dr. If the investigator assumes that :
the two companents are J.ndepende.nt then the system reliability is :

@G.1) FI(t) = exp( = (A; +1,)t) and system mean life is up = /(A + X)),

If the camponents are not independent, but in fact follow one
of the models in Sectmn 2, then a measure of the effects of
incorrectly assuming J.ndepqm a(r) = (FCe) - FI(t))/f () and
§ = (‘,‘ - uI)/uI. for predicting system reliability and system mean
life, respectively, where F(t) and u are computed under the
appropriate dependent model. Values of F(t) can be computed
directly from (2.2), (2.3), (2.4), (2.6) (by rumerical integration)
or fram (2.7). Expressions for u are given in Appendix 1. ALl

6=

A PR ORI e NN
Sy - R . -\ Coto J‘ ~ ﬂ
\L‘ﬁ\-{.ﬁt&.h .amu{u“'z.. r_':c.. e etn i b A s ;. A ‘m‘.ﬁ'&&?



haddinfo e do gt AT 0 B8 Boa 2.8 a0 '-ﬁ‘~‘w“"‘ﬂﬁl““"“0“v"‘l!!” 4 T " Y 'E‘E'!'U.u'u'!.ﬂ'!l!'!.!

expressions for A(t)} and § depend on the values of A; ad 1, only
through the ratio xl/xz = Kand for K ¢« 1 the values are equiva-
lent to those for K* = %. For the upper Prechet distribution,

K
A(tp~)=p'm-ldml<zla:dtp=thepoint
where ?'I(tp) = p. Also § = 1/K for K > 1. For the lower Frechet
distribution
o1 K X 1
A(tp)'-' p-m*p-m-p-l-lif pm+pK-l>0
-1 otherwise

ard § = K2 + K + 1 = (D)% Y + (K+1) 2Zn(Y) vhere Y is the solu-
K K

tion of the equality XX + X = 1. Table 1 gives the values of
aCt,) x 100% and § x 1008 for p = .9, .7, .5, .3, .1 for the upper
ard lower Fréchet distributions.

From Table 1 we see that the largest percent error occurs |
when the parameters are equal. Also for fixed K there is rela-
tively small error in estimating system reliability by modeling
a dependent system by an independent system when F(t) is large.

For smaller values of system reliability one can be appreciably
misled. Errors in estimating system mean life appear to be
substantial unless one camponent has considerably longer marginal
life than the second one. In that instance, one can See instinc-
55 tive;y that the correlation would have a minimal impact.
e Figures 1A-1C and 2A-2C are plots of A(tp) for p = .2%, .5, .75,
s A =land A, =1, 1.§ for the five mdels.described in Section 2.
e, Figures 3A, 3B are plots of § for, all five models as a.function of
T'-" the correlation. Fram these plots. note that for positive correla-
:,.*- tions the most modeling error occurs for the Gumbel C model. For
e relatively small correlation,.-.25 < p < .25 there may still be a
tf:.':f-'
fioas =1-
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moderate modeling error, on the order at least + 10% for pre-
dicting system reliability at Fr(t) = .25, or ?I(t) = .5 and for
estimating the mean system life.

TABLE 1
UPPER AND LOWER BOUNOS ON THE PERCEMT ERROR [N MODELING SYSTEM LIFE
F(N=0.9 F(T)1=Q,7 “F(Ne.S F(1)=0.3 FiT1s0, 1 MEAN LIFE
LONER UPPER LOWER UPPER LOWER UPPER LOKER UPPER LOWER  UPPER LOVER  UPPER
K B0UND BOUND BOUND BOUND BOUND BOUND  BOUND  BOUND  BOUND  BOLND  -3OUNO BOUND
1 -0.29  S.41  -3.81 19.52 -17.16 41.42 -100.00 §2.57 ~-100.00 216.23 -38.43 100.00
2 0.2 357 <L3Y 12,42 1827 2599 -100.00 49.38 -100.00 L13.44 ~37.07 30.00
3 4.2 247 -2.86 9.33 -12.90 18.92 -51.52 3S.12 -100.00 77.83 -34.83 3.33
4 .09 203 <244 .39 -11.02 14.87 44001 27,23 -100.00 S8.49 -32.43 23.00
3 0.6 LT -2 612 .57 12,275 -30.38 .22 -100.00 .78 -§1.06 20.00
4 -0.14 (.52  -1.87 $.23  -8.45 10.41 -390 18.77 -100.00 3A.93 -29.53 16,87
7 -0.13 LI -7 456 1SS .03 -.T 1624 -100.00 .33 -28.18 14.29
(] 0.12 18 -1.51 404  -4,82 0,01 -27.42 1431 -100.00 218 -26.99 12.30
9 -0.11 1.0 <1.37 3.83  -6.22 .18 -25.02 12.79 -100.00 25.8¢Y ~25.97 1.1
10 ~0.10 0.9 -1.28 3.30 -5, 70  &.50 -22.99 11,57 -100.00 23.28 -24.99 10.00
1 -0.09 0.88 -1.17 3.02 -5.28 S.95 -21.27 10.35 -100.00 .15 -.12 9.0¢
12 ~g.08 0.81 -1.08 2.78  -4.91 S.48 -19.78 9.70 -100.00 19.38 -23.34 8.33
13 -0.08 0.76 -1.01 2.58 -4,59 .08 . -18.49 8.98 -100.00 17.88 ~22.62 1.49
14 -0.07 0.70 -0.93 .4 -4.30 473 -17.35 4.36 -100.00 1659 -21.% 7.4
13 -0.07  0.46 -0.90 2,25 -4.05  4.43  -14.35 .82 -100.00 (3.48 -21.35 4,87
16 -0.06 0.42 -0.85 .12 -3.83 Al&  -15.45  7.34 -100.00 14.30 -20.718 4,23
17 -0.06 0.39 -0.80 2.00 23,63 3.93  -14.85  6.92 -100.00 13.45 -20.26 35.88
18 -0.08 0.3% 0,76 1.89  -3.45 3.72  -13.93 &.5¢ -100.00 12.88 -19.76 5.3
1? -0.06 0.33 -0.73 1.80 <329 .53 -13.27 .20 -100.00 (2.20 -19.30 5.2%
20 -0.05 0.30 0.4 LN 304 3.3 -12.47  S.90 <9226 1L5?  -l8.@7 3.00
U -0.05 0.48  -0.66 1.63 -3.00 3.20 -(2.13 S.63 -8A.34 11.03  -18.4 4.76
a -0.03 0.4 . -0.64 1.5 -2.88 .06 -l LW -84.73 10.53  -18.08 = 433
3 .05 0.44 0,60 1.50 -7 2.93 -6 S.4 -GL4 10.07 177t 43S
r{) 0.00 0.42 ~0.59 1.4 2.4 281 -10.74 493 -TR.34 .85 -1.31 L7
-] .04 0.41. <0.57 (.38 -S4 270 -10.34 44 -15.49 .26 ~-17.04 4,00
8-
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%. Errors in Estimating Companent Parameters

4.1 Parametric Estimdtion

_ In this section we examine the effects of incorrectly assuming
independence on the magnitude of the estimation error in esti-
mating the first component mean life based on data from series
systems. Suppose that n series systems are put on test. For
each system we observe the system failure time and which component
caused the failure. Let n; dentoe the number of systems where
the system failure was caused by failure of the ith component,
i31, 2, ard let T be the total time on test for all n systems.
If we assume that the component lifetimes are independent ard
exponentially distributed then Moeschberger and David (1971) show
that the maximum likelihood estimator of 1, the first component
mean life is
4.1) u, = Thy for ny > 0. :
This estimator is asymptotically unbiased and for n finite
E(u)) = E(D)-EV/n |n; > 0) due to the independence of T and n.
Suppose now that the two camponent lifetimes are not inde-
pendent but follow one of the models discribed in Section 2. If
we incorrectly assume independence then a measure of the excess
bias due to incorrectly assuming independence is
8 = [E(u, |Dependent model) - E(;llindepe.nde.nce)]/ul. For each of
the deperdent models under consideration T and n, are independent.
For large n, B converges to (u/p--ul)/ul where u is the mean
system life and p is the probability the first component fails
first, computed under the dependent model. For finite n,
EGuy) = 0 u E,(Um [ny > Q) computed under the appropriate mdel,

n
Y - n, K X n .
where Ep(‘/nlln1 > Q) = KZJ.(k)P Q-p)l /K / A-(1-p)"). Expressions

for u and p are given in Appendix 1 and Apperdix 2, respectively.
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The expressions depend on A,, A, only through the ratio K = A,/A,.
For all models, p 3 1/2 when K = 1,

For the upper Fréchet distribution p = 0 if K < 1; 1/2 if K = 1;
ard 1 if K > 1. Hence for K < 1 no failures from the first com-
panent are ever observed so that the modeling error B becomes
infinite for all n. For K> 1, p =1land u =y so that
B=Q -~ E(ullIndependence)/ul) which terds to § as n+=. In
this case the models with correlation ranging from @ to 1 have B
increasing for p < pq and decreasing for p > py- For the lower
Fréchet distribution, p is the value of X which solves the
equation X + X< =1 =0. For K< 1 wehavep < 1/2 and for K > 1
we have p > 1/2. Table 2 gives the value of B for n = 25, S0, =
for the two Fréchet distributions. It also gives the maximum
modeling error for the Gumbel C model which is an indication of
maximal excess modeling error.
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From Table 2 we note that the dependence structure exerts a large
effect on estimating the smaller of the two camponent means and
that either effect is most exaggerated for small sample sizes.
For K > 1 there is very little sample size effect on the modeling
error. For K strictly bigger than one the maximum bias under the
Gumbel C mpdel decreases with K and the correlation at which this
maximum is attained also decreases to Q. Figures YA-4C are plots
of Bas n+ = for K = 3/2, 1, 2/3, respecitvely. Figures SA-5C
are plots of B for n = 10 for K = 3/2, 1, 2/3, respectively.

TABLE 2
RELATIVE MQDELING ERRQR [N ESTINATING THE NEAN
=20 N30 Ns[NFINITY
LOwER GURBEL C LONER GUNBEL C LOWER GUnseL C

K BOUND RHO=! RHO RIAS  BOUND RWOs( RHO BIAS  BOUNO RMOsl RHO  BIAS

1710 ~187.48 eedees 1,000 sesese  ~00,09 seecee 1,000 socees  -50,44 coeads 1,000 Heeed
1/ 9 ~142.98 tedees [ 000 edesse =74, 35 secass [, 000 eoteee  -57.84 oot [ 000 to¢see
17 8 -123.37 teceas {000 taeeee  -75.58 teeees [, 000 eesess  -S5,93 secese | 000 teness
177 107,25 sesees 1,000 eeease =49 03 etetes [ 000 cotsae  -55 87 tesedss 1,000 teedee
17 6 -93.64 06098 1,000 setess  -43.50 sesene 1,000 seteee 54,43 cocese {,000 tettte
175 -81.91 sescee |,000 esosee <51 54 veetee [, 000 tetoee  -Sh. 13 seetse 1,000 eevéee
17 & =71.43 eeeeae |, 000 setbte  <S57.50 eactee 1,000 veavee  -51 20 svaete [ 000 tesdne
173 <81.79 tee0ae 1,000 eeteee  -53.00 eecdee ] 000 sotoes  <4B,73 cecede 1,000 s0eese

172 -S2.014 eesnee 1,000 sasase  -47. 5] vecose 1,000 veeeee  -48.08 seeess | 000 vectee
{ -40.90 105.99 1.000 105.99  -39.43 102,13 1.000 102.13 -38.53 100.00 1.000 100.00
2 -32.% -2.79 0.5i0 10.82 -32.84 -1.04 0.518 11.50 -32.12 0.00 0.528 (1.9l
I -28.28 -1.820.400 S5.33  -28.39 <-0.69 0.410 i.8¢ -28.39 0.00 0.42¢ .13
¢ 2343 -1.330.346 339 -29.76 -0.52 0.362 .74 -25.03 Q.00 0373 4.0t
$  ~3.62 -1.08 0,312 .39 -23.80 -0.41 0,330 2.7t -23.90 Q.00 O.3A1 2.9t
6 22,065 -0.090.288 1.2 -22.23 -0.340.307 2.0 -2.3% 0.000.31% 2.24
7 <077 «0.76 0.271 1.4 -20.98 -0.29 0.29% L. .6 -2U.11 0.000.308 t.83
1 -(9.49 -0.47 0.237 1.0 -19.92 -0.26 0.177 1.40 -20.04 0.00 0,28% 1.3
! -18.78 -0.59 0,245 1.01 -19.00 -0.23 0.264 .17 -19.13 Q.00 0.27Y L. Y
10 -17.98 -0.530.237 0.87 -180.20 -0.20 0.237 t.03 -10.33 0.00 0.271 L. l14
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TABLE 3

FIDe0.$

ASYNPQTIC 3{AS OF THE PRODUCT LIALT ESTINATOR

F(T1=a,3

LOwER
K BOUXD

GUNBEL C

81as

LOvER
8ouNd

GUNBEL C
RHG=1 RHO BIAS

LOwER GUNSEL C
BOUND RHO=t RNO  BIAS

17°9 ~100.00
{7 4 -100.00

1/ 71 -100.00
1/ &
1S
14
13
12

-100.00
-100.00
-100.00
-100.00
=100.00
-100.00
-100.00
-43.03
-1.67
-1.3¢9
-1.18
-1.03
-0.92
-0.82

O O M~ O A St P -

—

Figures SA-SC for p = .25, 6A-6C for p
D = .75 are plots of A.l(p) for the 5 models
As in the previous figures one can see that

=100.0¢

42,86 1.000
42.86 1.000
42.86 1.000
42.86 1.000
42.85 1.000
42.86 1.000
42.86 1.000
42.86 1.000
19.32 1.000
9.00 0.328
0.00 0.424
9.00 0.373
0.00 0.341
0.90 0.319
0.00 0,303
0.00 0.290
0.00 0.279
0.00 0,27t

42.86
42.488
42.88
42.84
42.84
42.88
42.8%
42.86
19.32
3.7
.09
1.38
.01
.79
0.64
0.34
0.46
0.4

-100.00 100.00 1.000 100.00
-100.00 100.00 1.000 109.00
-100.00 100.00 1.000 {00.00
-100.00 100.00 1.00¢0 100.00
-100.00 100.00 1.000 100.00
-100.00 100.00 1.90¢ 100.00
=100.00 100.00 1.000 100.00
-£00.00 100.00 1.000 100.00
-100.00 41,42 1.000 41.42
~2.47 0,00 0.328  7.43
-14.98  0.00 0.42¢ &, 10
-10.78  0.00 0.373 2.0
-8.42 0.00 0,301 1. 98
~6.91  0.00 0.317 (.34
~5.86 0.00 0.303 1.26
-5.09  0.00 0.290 1.03
-4.30  0.00 0.279 0.90
-4.03  0.00 0.271 0.78

-100.00 233.33 1.000 233.33
-100.00 233.33 1.000 233.33
-100.00 233.33 1.000 233.33
-100.00 233.33 1.000 233.33
~100.00 233.33 1.000 233.33
-100.00 233.33 {.000 233.33
-52.70 233.33 1.000 235.33
=24.21 233.33 1.000 233.33
-9.63 02,37 1.000 R2.37
-4,40  0.00 0.328 13.&7
-2.8% 0,00 0.42¢ 1.22
LIl 0,00 0373 L4
-44,50 0.00 0.31 .47
-34.83  0.00 0.31Y .70
-28.71  0.00 0.303 2.17
<2445 0.00 0.290 1.83
=203 0.00 0.279 1.7
-18.89  0.00 0.271 .37

= .5 and 7A-7C for
and X = 3/2, 1, 2/13.

for even a small

departure from independence the relative effect of dependerce
can be quite large.
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o 4.2 Nonparametric Estimation
"
:':: A secord approach to the problem of estimating camponent

::::. parameters is via the nonparametric estimator of Kaplan and

s Meier (1358). Investigators who routinely use nonparametric

techniques may take this approach in hopes of obtaining estimators

that are robust with respect to the assumption of exponentiality.
5'-, However this estimator is not necessar‘ly robust to the assumption
D of independence.
;‘\' The product limit estimator, assuming independent risks is
: a constructed as follows. Suppose that n systems are put on test
. andletrn, RS .bed\emxﬂsofmeon‘leredn failures
e fram cause i, 1.(1)'1“" L(n),aux:ngaJ.J.norcler lifetimes.
o The estimator of the ocmponent ml.ubmty for the i® component is
A %
‘o p N
::: “.2.1 S;(x) = 1if X< Xi0yy o
o> 3(i,%) X > Xese1)

LM ™) .
$ H n- !‘ij
:.J j=l ne- Plj +1

Y .
e where j(i,x) is the largest value of j for which X{(3) < x. This
N estimator is asympotically unbiased when the component lifetimes
::‘\' are independent.

?. When the risks are dependent Klein and Moeschberger (1983)
2y show that Si(t) is not estimating the marginal component relia-
o bility, but rather it is estimating consistently another survival

(] & function

S :

e .22 HGa = acp(—fx d qy(t) ) where

= @ Ko

2:,.: F(t) = P(minimm (X ,X,) > t) and Q;(t) =

q - - . -
. P(mmO(l,xz) <t, m.n(xl,xz) a Xi). i=1, 2. Bqgressions for
K

N,

%

a

A
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%Ct) for the five models of interest are given in Appendix 3.

A measure of the affect of dependence in using the Product
limit estimator with dependent risks is g,(p) = (I{L(tpl - p¥/p
where tp is the time where the true camponent reliability is p.
A]_(p) is again only a function of k = A1/A,- For the upper
Frechet distribution

8, = pt -1 for k<1
/2y for k=1 sirce
a for k>1

for k < 1 ﬁl(t) = 1 for all t since the first camponent never
fails, while for k > 1 all failures are due to the first component.
For- those models with correlation spanning the range (0 - 1),4,(p)
is increasing for correlations less than p* and decreasing for
correlations greater than p* when k > 1. For the lower frechet

1 du for p> (1-Y)

k

distribution ﬁl(tp) s exp -J’
P utu -1

Q otherwise.

Table 3 shows the value of Al(p)' x 100% for p = .7,..5, .3 for the
two Frechet distributions. For k > 1, the maximum value under

the Gumbel C model is also given. As in the parametric estimation
problem the largest errors are incurred when k < 1. In all cases
the effect of a departure from indeperdence is the largest when

p is small (i.e. for large t). The effect decreases as k
ircreases reflecting the fact that when kk1> > Az the majority
of the system failures are due to the failure of the first

component..
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S. Conclusions

The results presented in this paper show that for all five
bivariate exponential models one may be appreciably misled by
falsely assuming independence of camponent lifetimes in a series
system. The amount of error incurred in modeling system reliability
rot only depends upon the correlation between camponent lifetimes
but also on the level of system reliability. The error in
modeling mean system life similarly deperds upon the correlation
and the length of mean system life. Both quantities depend on the
relative magnitudes of the parameters.

For the dual problem of estimating component reliability
based on data from a series system, it appears that departures
from indeperdence are of greater consequence. Both parametric
and ronparametric estimators of relevant component parameters
are inconsistent. Bias increases dramatically as the correlation
gets further from zero. However, the five models do not exhibit
appreciable differences in bias and mean squared error as
correlation changes. This suggests that these models may belong
to a large class of bivariate exponential distributions which
possesses the properties exhibited here.
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Appendix 1
Formulas for expected System Life,

My

Gumbel A - exp O, A ol . (AL.1)
e CRY
2 Vi, 12

Where $(-) is the survival function of a standard normal random
variable.

Gunbel B - 1 +6 p'xlkz (Al.2)
(Xl*kz) QA AT IR +20.)
172 1 72°1 2

Gumbel C - (x‘{«»x';)'l’ m (AL.3)

Downton - (Xlﬂz)(l—o) (al.4)
—_—
[(xl+x2) - Y4 xlle

2 2,2
+ [(Al+x2) -V(x1+x2) - 4p Xlkzltkldz -2 Xlkzl

2
lexz[(kl+k2) - up Xlxzj

Gakes - found by numerical integration
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Apperdix 2 - Formulas fgr p = P(X1 < Xz)

2
A 4,) N .
RV 26,/ 12

m
Gumbel A - P(X; < X,) = 1/2 + O, A, Wi exp( =

where ¢ (+) is the survival function of a starndard normal

random variable. (A2.10)
- P = -
Gumbel 3 (Xl < X,z) )‘1 + Up )\2()‘1 )‘2)
(AI*AZ) (x1+x2)(xl+ sz)(leﬂz)
(A2.2)
_.m
Gumbel C - P(Xl < X2) z '\l
m .m
(xl*xz) (A2.3)
Downton - F’(Xl < Xz) = ZAI;\‘,(l-o)
7 2
(M(;l*wz) - Up xlxz)(xl Ay * V(11+A2) - uoxlxz)
(A2.4)
Aaxes - 200w X)) found numerically.
SRR O L e S e o e e S e e :8&.'*



o Appendix 3 -
g, Gumbel A - l'_&(x)

(- A x - 'Xuxz) (A3.1)

b, _ x
ﬁ Gumbel B - Hl(x) expl{- [ (1 + Ho(l—exp(-lzt))(1-2exp(-\1t))] A3.2)

d

o1 + uo(l-exp(-kzt))(l—exp(—\lt)) ]

Gunbel C - (x) = exp|- AT
ﬁﬁ bt lx .. (A3.3)
: m_,m, m
(11+X2)

> Downton - Found numerically due to no close fom solution for
F(o).

_ x
Oakes - H (x) = exp]- JPO A exp() (8-1)t) de

—
AL

{exp(r, (8-1)t) + exp(},(8-1)t) -1}
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FIGURE 1A

Relative Error in Modeling System Reliability at tp = .25
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Figure 1B

Relative Error in Modeling System Reliability at tp = .25
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FIGURE 1C
Relative Error in Modeling System Reliability at tp = .7S
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FIGURE 2C

Relative Error in Modeling System Reliability at tp = .75
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FIGURE 3A ;

Relative Error in Modeling Mean System Life ;
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FIGURE YA

Asymptotic Modeling Error in Estimating uy for K = 1.5

o~
N
c’
o~
od
wv
CD'-
o]
o
]
o
(n et
(e o
L"Jm
(o] XEY
- 4 @ ----GumBEL A
we a ----CUMZSL 3
+ =----GumeeL C
Q x -~--+-00uUNTON
() » ----0RKES
=
o
=)
Y
lJJ ]
lons
[an]
o
o4
i
w
o
I.
o~
< g T
-0.50 -0..25.

- —

a—
0.00 .

Y - .
o5 - 0.50 ---0.75— ~—1=00
CORR.

DY I ot R e R L R R R N T L T T T R S N A S L S
WaGHEY i'm:iﬁﬂm& \(‘i‘&':'\-. :k'\{ {VJ-{\':\".\'{\‘_\\\ A.’A.‘ﬂ



Ll d L oy WO I UTTE Lo Bd aid g A das Coa as Sab ool o o 4

N FIGJURE 4B

o Asymptotic Modeling Error in Estimating u; for K =1

1.50 1.75

A
1.25
1

Pt s

ok el wie

J-i.'s
B1
0

KEY "
® ~---GUMBEL A
a ----GUMBEL 8
+ ----GUMBEL C
X ===-00HNTGN

% ~---CRKES

-0.20 - 0.00 — -~ 0.20 — -"0.40 ~0.60° ~ T,0.80
* CORR:

PPN PR PP L
'y "!‘f\' .l'(\'}ip ) “n _\{
AENY,] ALY

\}'

TCXC
- ‘-“’ *-

N e R S A S e AL 4y

3.0 0 ) AW 20 e P i x . s o g X)



N euw W N WU U WY N 7T W YT YT EEY ey YL T e e _-W

;
4% FIGURE 4C |

Y Asymptotic Modeling Error in Estimating u, for K = .67
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Asymptotic Error in the Nonparametric Estimator of the
First Component Survival Function at
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A RANDOM ENVIRONMENTAL STRESS MODEL FOR COMPETING RISKS

John P. Klein and Sukhoon Lee

Department of Statistics
The Ohio State University
Columbus, Ohio 43210

ABSTRACT

A random environmental effects model is proposed for competing risks experiments. The
model assumes a random stress, Z, which changes the scale parameter of each of the assumed
Weibull times to occurrence of the risks. Some general properties of the model are discussed, and
specific properties for 2 Uniform or Gamma stress model are presented. Estimation of parameters

under the Gamma stress model is considered, and a new estimator based on the scaled total time on
test transform is presented.

INTRODUCTION

The problem of competing risks-arises naturally in a number of engineering or biological
experiments. In such experiments, for some items put on test, the primary event of interests (such
as death, component failure, etc.) is not observable due to the occurrence of some competing risk
of removal from the study (such as censoring, failure from a different component, etc.).
Competing risks arise in an engineering context in analyzing data from

(a) series systems,
(®) field tests of equipment with a fixed test time and a random or staggered entry into
the study, or

(c) systems with multiple failure modes.
Competing risks arise in biological applications in analyzing data from
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o '
E?. (@) clinical trials with a fixed trial duration and staggered entry
) ®) clinical trials with some patients withdrawing from the trial prior to response
() studies of the time to death from a variety of causes
f:' A common assumption made in analyzing competing risks experiments is that the potential
E’ (unobservable) times to occurrence of the competing risks are independent. This assumption is not
::; testable due to the identifiability problem. That is, for any dependent competing risks model, there
’ exists an independent competing risks model which yields the same observables. (See Basu and
a" Klein (1982) for details.) However, Moeschberger and Klein (1984) show that an investigator can
';;: be appreciably misled in modeling competing risks by erroneously assuming indepencence.
X In this paper we present a model for dependence between the various risks by assuming that

dependence is due to some common environmental factor which effects the potential times to
occurrences of each risk. In section 2 we present the model and study its properties for bivariate
» series and parallel systems. In section 3, we consider estimation of the model parameters for
s.': competing risks systems.

™

R 2. THEMODEL

For simplicity we shall consider the problem of bivariate systems and discuss our model in’
terms of engineering applications. We assume that under ideal, controlled conditions, as one may

0 encounter in the laboratory in the testing or design stage of development, the time to failure of the
' :‘$' two components, to be linked in a system, are Xg and Y. We suppose that under these |
conditions, X, Y have survival functions Fg, Gg on [0, ). We assume that both X andY( J

f; follow a Weibull form with parameters (n 1 ll) and (M, 12), respectively, That is, F(x) = exp(- |
) :
R
" llx“l). The Weibull distribution, which may have increasing (1} > 1), decreasing (n < 1) or

ih

. constant failure rate ( = 1) has been shown experimentally to provide a reasonable fit to many

Y different types of survival data. (See Bain (1978)). We now link the two components into a
i system in such a way that under ideal lab conditions the two components are independent. |
4 Now suppose that the above system (X, Y() is put into operation under usage conditions.
:'_ We suppose that under such conditions the effect of the environment is to degrade or improve each
Ky component by the same random amount. That is, the effect of the environment is to select a
" random factor, Z, from some distribution, H, which changes the maginal survival functions of the
. two components (o Fo"z and GOZ. A value of Z less than one means that component reliabilities are
‘ simultaneously improved, while a value of Z greater than one implies a joint degradation. The
I.Q .
B
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a \ resulting joint reliability of the two components’ lifetimes, (X,Y) in the operating environment is |

.:E' F(x,y) = Elexp(-Z(A{x"1+ Ayy"2)]. 2.1

::. This model has been proposed by Lindley and Singpurwalla (1984) in the reliability context

; when F(, G are exponential and H( ) follows a gamma distribution. This basic dependence

34

- structure was also proposed by Clayton (1978) to model associations in bivariate survival data, and

later by Oakes (1982) to model bivariate survival data. Hutchinson (1982) proposed a similar |
model when H( ) has a gamma distribution and Fq(t) = Gq(t) = exp(-t").

™ -

‘ The model described above for a general distribution of the environmental stress has a !
R particular dependence structure which we summarize in the following lemmas. |
.,_) Lemma 1. Let (X,Y) follow the model (2.1) where Z is a positive random variable with finite
- t s
; {\ (— + _)"-h inverse moment. Then
! N oM
o My sy My 48Mp)
. ?:-:' EXTYS) =), A I[(1+ rmyp) T+ smy) EZ ) (2.2)
d ?.;j The proof follows by noting that, given Z = z, (X,Y) are independent Weibulls with parameters -
‘ , -rmyp -r'my
. (M1, A1 2)and (M, Ay 2), respectively and E(X"|Z=z) = A z [(1+ r/ny) with a similar
IK‘. ’
v expression for YS. When the appropriate moments exist, we have
s -1my
_ (A) EX)=EX@EZ )
o 5 -1my -my
3: B) VX =EXg®) Var(Z )+E@Z )< Var(Xg),
-imp _ -Im
. (©) Cov(X,Y) = E(Xg) E(Yg) Cov(Z , Z 2) which is greater than 0.
N
V j::' If Ny =M, =7 then the correlation between (X,Y) is
l‘ 4
7 T(1+ 1m)2 Var(Z- 1My
%
o P '
T Var(Z VM) F(1+2m)+ (T +2m) - T(1+1m)2) EZ- 1y2
. In this case the correlation is bounded above by I'( 1+1/11)2 / I(1+2/m). Figure 1 shows the
) ,
S8 maximal correlation as a functcion of 7 forn € (0, 10). Note that this maximal correlation is an
W
!
B
.:'.“\“‘\!h, *-;_‘ a“.'-\¢x- e T e s T S T e o
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A FIGURE !
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increasing function of 1. One can also show that F(x, y) is positive quadrant dependent for any

Tl 1’ 712-
Exact expressions for competing risks quantities of interest can be computed when a
particular model is assumed for the distribution of Z. We shall consider the gamma and uniform

models. Consider first the gamma model with h,(z) = b2 z2-1 exp(-bz)/T°(a), z > 0. For this

model, the joint survival function is

ba
F(x,y) = (2.3)

n n
[b+Ayx 1+ Ay ﬁa

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are
univariate Burr distributions with

-1m
EX) = (lllb) ll(l+1/n1)l"(a- 1Mm) @), ifa> 1/m,
-2my  rd+2mpr(a-2my) r{(1+1mpria-1/myp)
VarX) = (Ad) -1
I'(a) I'(a)

with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is

123, if a>2m,

-I/T]l -1/112

I(a-1My-1My) T(a-1/My) T(a-1m9)
Cov(X,Y) = (A1/b) (Ap/b) C(1+1my) T(1+1ma){ R 2 %

I'(a) I'(a)

fora>1m; + 1Mm,. For the gamma model, the reliability function for a bivariate series system is

given by
1 2 .,
Ry = (1+(A /D)t + (At~ )4, (2.4)
and for a parallel system by
n n n n
Rp(t)=(1+( A1/b)t 1+(1+ M/t 2)'3- (1+( Ay/b)t 2+ (Ag/b)t 2)'3 (2.5)

Figures 2A-E are plots of the series system reliability for A;= 1, A, = 2 and several combinations
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3 of 15, M,. Each figure shows the reliablity for a = 1/2, 1, 2, 4, and the independent Weibull

'_ model. In all cases, b = 1. For these figures we note that for fixed ;‘1’ lz Ny: Ny, ¢, the series

)

N system reliability is a decreasing function of the shape parameter a. Figures 3A-E are plots of the
! : parallel system reliability (2.5) for the above parameters. Again, the reliability is a decreasing

" function of a. Also in both the series and parallel system reliability, the shape of the reliability

Y function is quite different from that encountered under independence.

t
" The gamma model is a reasonable model for the environmental stress due to its flexibility and
4 the tractability of the model in obtaining close form solutions for the relevant quantities and in
' estimating parameters. However, in some cases, such as when the operating environment is
2 always more severe than the laboratory environment, the support of H may be restricted to some
K fixed interval. A possible model for such an environmental stress is the uniform distribution over
0 [a,b]. For this model, the joint survival function is
i

: i 2 n n2
. [exp (-bAy x ~ + Agy = ))-exp(-a(Aix + Ayy "))

} F(x,y) = (2.6)
B T‘ 1 n .
) (b-a)Ax + Ay %

8 -1my Mp-DMp (- )

S EX) = A C(l+1mpng ® -a ) {(n1-1)(b-a)] ifng=1

: = n(b/ay/[),(b-a)] ifny=1,
-2My (M1-2)m, (111-2)/711)

B Var(X) =1y Ay {T(A+2Mm)ny -a

\

‘ (b-a)

URANIRURTERN
- Taam?Zn e e 2ot
- (M1-1)4(b-2)

X 2 2 .

2/(A2ab) - an(b/ 2)2/[(b-a) ;] ifny=1

v ol an(b/ a) I N
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FIGURE 2 A
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 B
SERIES SYSTEM RELIABILITY UNDER GAMMA (R, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 C
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
o FOR THE ENVIRGONMENTAL STRESS.
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B FIGURE 2 D

SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
o FOR THE ENVIRANMENTAL STRESS.
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i FIGURE 2 E
SERIES SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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R FIGURE 3 R
‘ PARALLEL SYSTEM RELIABILITY UNDER GAMMA (R, 1) MODEL

ol FOR THE EM/IRONMENTAL STRESS.
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FIGURE 3 B
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MODEL
‘ FOR THE ENVIRONMENTAL STRESS.
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s FIGURE 3 C
e PARALLEL SYSTEM RELIABILITY UNDER GAMMA (R, 1) MODEL
FGR THE ENVIRONMENTAL STRESS.
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FIGURE 3 D
PARALLEL SYSTEM RELIABILITY UNDER GAMMA (A, 1) MADEL
FOR THE ENVIRONMENTAL STRESS.
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For this model, the reliability function for a series system is
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and for a parallel system is

ny n n n
Ryt = [exp(-b(A;t ]") -exp(-a Aqt 1) + [exp(-b Ayt 2) -exp(-a Apt 2)

-Rs(t)
n n
(b-a) At 1 (b-a) Myt 2

Figures 4A-E show the reliability for a series system and figures SA-E for a parallel system

under the uniform model for various combinations of ll, Lz, M 1, M 2 a,b. Notice that when A =
.25, B = .75, which corresponds to an operating environment which is less severe than the test
environment, the system reliability is greater than that expected under independence, while when
(a,b) = (1.25, 1.75) or (1., 2), which corresponds to an environment more severe than the test
environment, the system reliability is smaller. Also when the (a,b) contains 1, which corresponds
to an environment which incurs the possibility of no differential effect from that found in the

laboratory, there is little difference in the dependent and independent system reliability.

3. Estimation of Parameters Under Gamma Model

Consider the model (2.3) withn; =15 =7. For this model, the reliablity for a series system
is

A1+M)

Ry = (1 + th=2, 3.1)

Notice that this model depends only on two parameters 6 = (X1+ )\2)/b and a so that if we had data

only from systems on test in the operating environment, the only identifiable parameters are a, 0,




FIGURE 4 A
SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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e FIGURE 4 C
A SERIES SYSTEM RELIARBILITY UNCER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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R FIGURE 4 D
i SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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Q; FIGURE 5 R
PARALLEL SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
o FOR THE ENVIRONMENTAL STRESS.
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& FIGURE S B
i PARALLEL SYSTEM RELIRBILITY UNDER UNIF (R,B) MODEL
e FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 C
PARALLEL SYSTEM RELIABILITY UNDER UNIF (R,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE S E

PARALLEL SYSTEM RELIABILITY UNDER UNIF (R,B) MODEL
FAOR THE ENVIRONMENTAL STRESS.
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1, not Aq, Ay, 1], 3, b. However, in many instances we have extensive data on the ormance of
1 Yy

the components in the lab under ideal operating conditions so that one may consider A, A, 1 to be

known based on estimates from this data. We shall focus on the problem of estimating 8 and a,

based on data on the system failure times collected in the operating environment. Lett,, ..., t, be
the failure times for n such systems put on test, and, let w; = :{ﬂ, i=1,..,n

Prior to attempting to estimate (a, 8), we would like to check if the model (3.1) is feasible.
A graphical check of this model can be done through the scaled total time on test (STTOT) plot of
Barlow and Campo (1975). The STTOT for W is

)
I Rs(t)dt
0
Gy () = = 1-(1-)@1/3 for 3 > 1, (3.2)

Note that (3.2) depends only on a. Figure 6 shows the form of the STTOT for several values of a.

Notice that for all a, the STTOT is below the 45° line (which corresponds to exponential system
life) since the hazard rate of the series system is decreasing. Let

i
Tn(W (l)) =2 W(J) + (n-i)W(i), (3.3)
j=1

where W(1) S W) <... £ W) are the ordered systems failure times be the total time on test at

W(i)- The empirical STTOT plot then plots (i/n, T,,(W (i))/T(W (n))) which can be compared to

figure 6 for a graphical check of the model. Also, crude estimates of a can be obtained by
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2y comparing the empirical and theoretical STTOT plots. When there is no random environmental
effect and the components are independent, then the empirical STTOT plot should look like the 45°
W line. Also as a tends to infinity this plot approaches the 45° line.

We now consider several estimates of a and 8. The log likelihood for the model (3.1), based
b on a sample of size n, is

n
I L@B)=nina+ninB-(a+1)Z in (1+0 W) (3.4)

i=1

n
. d/dal(a8)=n/a-Zin(1+6W) (3.5)
Shy i=1

n
ok and 0/00 L(2,8) =0/0 - (a+1) ¥ w;/(1+ Ow;) (3.6)
i=1

XN For (3.5) we note that the maximum likelihood estimator of a

e n
¢ H:‘:. amlc = (37)

n
o Y in (1 +8 W)
i=1

N and the maximum likelihood estimator of 9 is the solution to

7'_ n n W;
— -( +1)E =0 (3.8)
0 Zin(1+0W) 1+0W;

.'A - _an s

P AR
AU
Pl Al A o

n n
One can show that 0 is positive if n 3, Wi2 >2(2 wi)z. (3.9)
i=1 i=1

5
-3 In such case 6y, is obtained by solving

r\ ) ..' *." ‘\ r‘

-

T i RSN aaEn A A - < PO AR A N W e s
' '(‘ ? YN '“\*‘ WAL A .l.v\‘:‘l‘h .0‘: . '!‘\‘}l""lo . ‘e‘l'q WAkt ". g ‘. )

e .
"l‘l“ Scalh ,.,l.a.




R

o

W

-
Lo
o

W

AT

1

»

(3.8) numerically.

A second estimator of (a, 0) is the method of moments (mme). Since E(W) = [ 6(a- 1)]'1

\

and E(W?2) = 2[ 62(a-1)(a-2)]"! where a > 2, we have

T w;2 3 w;2-2(Zw;)2

dmme=1+ (3.10) and 9 =
T wZ- 2T wd) e T L w S w)?

(3.11)

provided that (3.9) holds. If (3.9) does not hold, then this estimator does not exist.
A third estimator was suggested by Berger (1983) in a different context. He suggested

estimating 0 a modified methods of moments estimator eber =(a w)'l, (3.12)
wherew = 3, w;y/n,

which is used as the true value of 9 in the likelihood (3.4) so that the estimator of a is the solution

to
wj (a+1) wi

_Z in (1+ )+ 2 =0 (313)
aw wal 1+w;/(aw)

A final estimator is based on the STTOT plot. Let C; = in(1-i/n) and D; =
on(1-Tn(W (i))/Tn(W (n)))’ i=1,..,n-1. If (3.2) holds, then we should have
D; = (1-1/a)C;i=1, .., n-1, (3.14)
so the value of a which minimizes

n-1
2 (D;-(1-1/a) Ci)2 is a reasonable estimator of a
i=1

;2
: : , i
The resulting estimator is ajg = B (3.15)
XC“-XC; D
DT I g e T I e U i e e T e e o 4 e N T T T A T I e T T Tt T L N N Tt AT e
o D R T O A N T e A A TR R S AR Ul o
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which is in the parameter space if 2 C,-2 > 2 C; D;. A better estimator should be obtained by
weighting the D;'s differently since for i < j, Var (D) < Var (Dj). The variance of D; depends on
the unknown parameter a so we weight by the variance of D; computed under an assumed

exponential distribution. The variance of D; in that case is

i 1
vV, =X i=1,..n-1 (3.16)
=1 ( n-J)2

so that the weighted least squares estimator of a is

AR

= if 3 C:2/V: > 3 C:D./V:. (3.17)
Awls CT CiDi i/%1 iV Yi

Once we have obtained a by either of the two least squares estimators, we substitute this value into
(3.6) and solve this equation numerically for ;5 or Oys.

The condition X CiZ/V i > X C; D;/Vj includes a few more possible samples than the
condition (3.9) for the other three estimators. However, those samples which satisfy 3. Ci2/V1- >
2 C; D; /V; for which (3.9) fails to obtain yield very large estimétcs of 8. Since a reasonable
model for T when 0 and a are not estimable is the independent Weibull series system which has
system reliability very close to (3.1) when a is very large, this is not a problem. Figures 7a and 7b
are scaled total time on test plots from two simuilated samples of size 30 from (3.1) witha =3,0 =
1. Looking at figure 7a, we see that the estimated scaled total on test doesn't look too different
from the 45° so that an exponential model might not be unreasonable. For this data set only the
weighted least squares estimator exists and it yields awy g = 45.33 and 6 = .0567. For the data in

figure 7b all estimates exist, and we have
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emle =.93 amlc = 2.98

8mme = 491 amme = 4.86
Oper = .720 aper = 7.02
O =.739 . ag=358
Byyis =970 ays = 2.89

To study the properties of these estimators, a small scale Monte Carlo study was performed.
Random samples of size n = 15, 30, 50, 75, or 100 were generated withA{ + Ay =3,b=3,500
-s1land a=2,3,5. 1000 samples were generated for each combination of n and a. The bias,
standard dew)iation of the estimates and n, the number of samples where the estimator exists is
reported in table 1 for a, table 2 for 6, and in table 3 for an estimator of the system reliability
obtained from (3.1) at tg = 9.085. The true system reliability at tg is .8255 whena =2, .75 when a
=3,and .619 when a = 5. Also reported in each table is the bias and standard deviation of the least
square and weighted least square estimators when they are restricted to those samples where the
other estimators exist.

From these tables we note that Berger's modified estimator performs very poorly. Also the
weighted least squares estimator allows for estimation of parameters in many more samples when n
is small. In general the maximum likelihood estimator outperforms the other estimators, however,
when the weighted least squares estimator is restricted to those samples where the maximum
likelihood estimator exists, this estimator performs much better when n is small. The somewhat
better performance of the MLE in terms of bias is deceptive since some of the estimates of a are less
than one, which implies that the mean system reiliability is infinite. Also the weighted least squares
estimator of system reliability seems to outperform the other estimators of the system reliability in
spite of its relatively poor performance as an estimator of 8. Our recommendation is to use the

weighted least squares estimator since it more often provides estimators of the relevant parameters

and is somewhat easier to compute.
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Un Dependent Competing Risks

b
John P, Klein rnd Sukhoon Lee
Department of Statistics
The Ohio Stace Universicy
Columbus, Ohio 43210 USA

1. Introduction

W The problem of competing risks arises naturally in a number of contexts,
‘AS namely the modeling of series systems in reliability, the problem of estimacion
for with censored data and the analysis of physical or biological systems with

}$; mulciple failure modes. A common, untestable assumption i{s usually made thact

the potencial failure cimes for each risk are statistically independent (see

Basu and Klein (1982)). Moeschberger and Klein (1984) show that an invesciga-
:{¢‘ tion may be appreciably misled in modeling series systems reliabilicy and in
gj- estimating component parameters by {ncorrectly assuming independent component
;:& lifecimes. [n this paper we model dependence between components through a
$n§- common environmental effect on each component, Such a dependence struccture
' has also been suggested by Oakes (1982), Lindley and Singpurvalla (1985), and
Hutchinson (1981). :
'.::.-. 2. The Model
:;{ Consider a two-component system. Suppose that under ideal, controlled
S conditions, as encountered in the testing stage, the times to failure of the
two components are X_ and Y_.. Under these conditions, X, ,Y,. are independent
e with marginal survival funcgions. F, and G,. Now suppose the two componencs
,ﬁ; are linked into a system and exposed to the environment. The effect of the
5\{ eavironmene is to select a random factor, Z, from a distribution, H(z), which
y A
":* changes the marginal survival functions of the two components to FO ' Coz.
respectively. A value of Z less than one means that component reliability is
AN improved, while a value greater than one implies a joint degradation. In the
" j sequel we assume that XO and Yo follow a Heibullagiscribution wich paramecers
o)
g . . - s
,§:j (@ .t¢). and (ag.A,). That is, Fy(x) = exp(-Ayx 7). The resulting joinc
N teliability of the two compongnts' lifetimes, (X,Y), in the operating environ-
= a
) ment is F(x,y) = E(exp(-Z(A_ x Xy NyY)). F(x,y) is positive quadrant dependent.
XN -L:'% x 2 "Z/Qx -1/0 2
S Also E(X) = E(XOE(Z )i V(X) = E(x° JE(Z ) -(E(XdE(Z X))~ : and
o
o 7 - - .
.::4 Cov(X,Y) = E(XO)E(YO) Cov(Z llu*. 2z llay). The correlacion is always positive
."..‘
% and is bounded above by [(l + 1/a)2/r(1 + 2/a) when a =a =a. Explicic,
— though lengthy, formula for che moments of (X,Y), system axd component
Mgl reliabilicy, and system components can be obcained wvhen Z is assumed to be
:f: eicher a uniform or gammar random variables. The gamma case leads co
*:ﬁ: bivariate Burr discributions.
e
W 3. Estimacion |
,;;; The escimation of model parameters {s carried out under the assumpction
» -l
_S:- thac 2 has & gamma discribution wich densicy h(z)ox‘ exp(~bz). Since the
; ' paramccers A, ky are not {dentifiable when only data from either a series or
!?,:I'
‘- ..
-
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parallel system is available, we incorporate sample information obtained
independently on each component under test conditions, Maximum likelihood

and method of moments estimators are obtained and their properties are studied
by Monte-Cario methods since no closed form maximum likelihood estimates are

available.
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Resume

Un modele pour les syscemes dependants dans 1’ analyse de la fiabilice est
examine. Le modele suppose que, sous les conditions ideales, les temps de
survie des coanstituancs du systeme ont des distributions Weibull indépendantes.
Sous des conditions d'opéracion un facteur extérieur aléatoire affecte chaque
constituant simultanément en multipliant son taux de hasard psr une quancicé
aléstoire. Les propriétés de ce modele ec l'astimacion des paramectres du
moddle sont considérés, ) partir des exemples concrets du laboratoire et de

la pracique.
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